1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
baherus [9]
4 years ago
14

bumper car A (281 kg) moving +2.82 m/s makes an elastic collision with bumper car B (209 kg) moving -1.72 m/s. what is the veloc

ity of car A after the collision?
Physics
1 answer:
USPshnik [31]4 years ago
4 0

Answer:

The final velocity of the car A is -1.053 m/s.

Explanation:

For an elastic collision both the kinetic energy and the momentum of the system are conserved.

Let us call

m_A = mass of car A;

v_{A1} = the initial velocity of car A;

v_{A2} = the final velocity of car A;

and

m_B = mass of car B;

v_{B1} = the initial velocity of car B;

v_{B2} = the final velocity of car B.

Then, the law of conservation of momentum demands that

m_Av_{A1}+m_Bv_{B1} =m_Av_{A2}+m_Bv_{B2}

And the conservation of kinetic energy says that

\dfrac{1}{2} m_Av_{A1}^2+\dfrac{1}{2}m_Bv_{B1}^2=\dfrac{1}{2}m_Av_{A2}^2+\dfrac{1}{2}m_Bv_{B2}^2

These two equations are solved for final velocities  v_{A2} and v_{B2} to give

$v_{A2} =\frac{m_A-m_B}{m_A+m_B} v_{A1}+\frac{2m_B}{m_A+m_B} v_{B1}$

$v_{B2} =\frac{2m_A}{m_A+m_B} v_{A1}+\frac{m_B-m_A}{m_A+m_B} v_{B1}$

by putting in the numerical values of the variables we get

$v_{A2} =\frac{281-209}{281+209} (2.82)+\frac{2*209}{281+209} (-1.72)$

\boxed{v_{A2} = -1.05m/s}

and

$v_{B2} =\frac{2*281}{281+209} (2.82)+\frac{209-281}{281+209} (-1.72)$

\boxed{v_{B2} = 3.49m/s}

Thus, the final velocity of the car A is -1.053 m/s and of car B is 3.49 m/s.

You might be interested in
How much energy does a 75-watt light bulb consume while running for 30 minutes<br>​
o-na [289]
Dont mind that guy guys
8 0
3 years ago
A falling object is said to reach a constant velocity (terminal velocity)..
Lana71 [14]
C

Terminal velocity is the maximum velocity attainable by an object as it falls through a fluid (air is the most common example). It occurs when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object.(Wikipedia)




3 0
3 years ago
In the late 19th century, great interest was directed toward the study of electrical discharges in gases and the nature of so-ca
gizmo_the_mogwai [7]

Answer:

A) He finds the same value of q / m for different materials , B)      y = ½ (q / m) E L² / v₀ₓ² , C) v = E / B , D)   B = 2.13 10⁻⁶ T, E) For the first part I have two off-center points., For the second part I can center one point but the other is off center

Therefore the third statement is correct

Explanation:

Part A

Thomson's experiments are the first proof that the atoms that until now were considered indivisible were constituted by different elements, in these experiments Thomson himself the ratio q / m of several cathodes and always found the same value, which allowed to establish that In atoms there are two types of particles, some of which are mobile and others are still.

When examining his statements the correct one is: He finds the same value of q / m for different materials

Part B

For this part let's use Newton's second law

        F = ma

        q E = m a

        a = q / m E

We use the kinematic relationship

          y = voy t - ½ to t²

          x = v₀ₓ t

The initial vertical velocity of electrons is zero

           y = ½ a (x / v₀ₓ)²

We replace

           y = ½ (q / m) E L² / v₀ₓ²

Part C

If there is no deflection, the electric and magnetic forces are the same and in the opposite direction

         Fm = Fe

         q v B = q E

          v = E / B

Part D

       

        We replace

        y = ½ (q / m) E L² / (E / B)²

         y = ½ (q / m) L² B² / E

If we do not want any deflection the magnetic field has to return the electrons the amount that they lower y = -4.12 cm

      -4.12 10⁻² = ½ q / m 0.12² B² / 1.1 10³

       -16.97 10⁻⁴ = 6.54 10⁻³ B² q / m

      B² = -2.59 10⁻¹ q / m

      q / m = -1.758 10¹¹ C/ kg

      B = √ 0.259 1.758 10¹¹ = √ 4.55 10⁻¹²

      B = 2.13 10⁻⁶ T

Part E

As the charge that the two particles is different

For the first part I have two off-center points.

For the second part I can center one point but the other is off center

Therefore the third statement is correct

8 0
3 years ago
The speed of an electromagnetic wave is a constant, 3.0 × 108 m/s. The wavelength of a wave is 0.3 meters. What is the frequency
mojhsa [17]
It would be 1.0 x 10^6 Hz
6 0
4 years ago
Read 2 more answers
What is the wavelength in nm of a light whose first order bright band forms a diffraction angle of 30 degrees, and the diffracti
Artist 52 [7]

Answer:

The wavelength is 3500 nm.

Explanation:

d= \frac{1}{700 lines per mm} = 0.007mm = 7000 nm

n= 1

θ= 30°

λ= unknown

Solution:

d sinθ = nλ

λ = \frac{7000 nm sin 30}{1}

λ = 3500 nm

8 0
4 years ago
Other questions:
  • Tyler's favourite number is 8642, and he tries to fit it into everything he does. If he wishes to do that much work by climbing
    6·1 answer
  • If you start skating down this hill, your potential energy will be converted to kinetic energy. At the bottom of the hill, your
    7·1 answer
  • A round pipe of varying diameter carries petroleum from a wellhead to a refinery. At the wellhead, the pipe's diameter is 58.9 c
    11·1 answer
  • A four-cylinder gasoline engine has an efficiency of 28 % and delivers 280 J of work per cycle per cylinder. A) If the engine ru
    15·1 answer
  • How is the atmosphere important to the water cycle?
    10·2 answers
  • In your research lab, a very thin, flat piece of glass with refractive index 1.20 and uniform thickness covers the opening of a
    14·1 answer
  • Suppose I produce radio waves with an antenna that have a peak electric field amplitude E and peak magnetic field amplitude B. I
    15·1 answer
  • Element 105 of periodic table
    11·2 answers
  • A 60KG WOMAN IS ON A LADDER 2 M ABOVE THE GROUND. WHAT IS HER POTENTIAL ENERGY
    10·1 answer
  • Compare the gravitational and electrical forces between an electron and a proton in the hydrogen atom (separated by 10^-10 m). W
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!