<h3><u>Answer;</u></h3>
Cellulose
<h3><u>Explanation</u>;</h3>
- Cellulose is a polysaccharide and the most abundant organic compound on the Earth's surface.
- <em><u>It is an important organic molecule due to its strong structure which provides a wide variety of functions. </u></em>
- <em><u>Cellulose is a major component of tough cell walls that surround plant cells and is what makes plant stems, leaves, and branches very strong.</u></em>
- The molecules of cellulose are arranged such that they are parallel to each other joined by hydrogen bond. this arrangement forms long structures that combine with other cellulose molecules producing a strong support structure.
Answer:
bonding molecular orbital is lower in energy
antibonding molecular orbital is higher in energy
Explanation:
Electrons in bonding molecular orbitals help to hold the positively charged nuclei together, and they are always lower in energy than the original atomic orbitals.
Electrons in antibonding molecular orbitals are primarily located outside the internuclear region, leading to increased repulsions between the positively charged nuclei. They are always higher in energy than the parent atomic orbitals.
Answer:
Fe(NO3)3 + 3 NaOH ===》Fe(OH)3 + 3 NaNO3
Answer:Nuclear binding energy is the energy needed to separate nuclear particles
The strong nuclear force holds an atom’s protons and neutrons together
Nuclear binding energy can be calculated using E=mc2
Explanation:
(A) gas to liquid
is most likely to take place. This change from gas to liquid is the forming of water molecules. Gas particles have the most energy and therefore speed up the most, whereas solids have the least amount of energy and slow down. The intermediate step from gas to solid is a liquid. We call this process from gas to liquid condensation.