1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
devlian [24]
3 years ago
14

Consider a room with dimensions as in the sketch. Assuming all emissivities of surfaces are equal to 0.9, calculate the radiativ

e heat transfer between the floor and the ceiling, if you know the surface temperature of the floor equal to 25o C and the surface temperature of the ceiling is equal to 10o C

Engineering
1 answer:
GarryVolchara [31]3 years ago
7 0

Explanation:

Below is an attachment containing the solution.

You might be interested in
Give me top 5 British snacks
tia_tia [17]

Answer:

1. Mini Cheddars

2. Sausage Roll

3. Monster Munch

4. Cheese Twists

5. Flapjacks

6 0
2 years ago
What is the activation energy (Q) for a vacancy formation if 10 moles of a metal have 2.3 X 10^13 vacancies at 425°C?
Yakvenalex [24]

Answer:

Activation\ Energy=2.5\times 10^{-19}\ J

Explanation:

Using the expression shown below as:

N_v=N\times e^{-\frac {Q_v}{k\times T}

Where,

N_v is the number of vacancies

N is the number of defective sites

k is Boltzmann's constant = 1.38\times 10^{-23}\ J/K

{Q_v} is the activation energy

T is the temperature

Given that:

N_v=2.3\times 10^{13}

N = 10 moles

1 mole = 6.023\times 10^{23}

So,

N = 10\times 6.023\times 10^{23}=6.023\times 10^{24}

Temperature = 425°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (425 + 273.15) K = 698.15 K  

T = 698.15 K

Applying the values as:

2.3\times 10^{13}=6.023\times 10^{24}\times e^{-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}

ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}

Q_v=2.5\times 10^{-19}\ J

4 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
A completely reversible heat pump produces heat ata rate of 300 kW to warm a house maintained at 24°C. Theexterior air, which is
Triss [41]

Answer:

Change in entropy S = 0.061

Second law of thermodynamics is satisfied since there is an increase in entropy

Explanation:

Heat Q = 300 kW

T2 = 24°C = 297 K

T1 = 7°C = 280 K

Change in entropy =

S = Q(1/T1 - 1/T2)

= 300(1/280 - 1/297) = 0.061

There is a positive increase in entropy so the second law is satisfied.

6 0
3 years ago
Which material has the highest cp value?
Nataly [62]

Answer: B. Water

Explanation:

6 0
3 years ago
Other questions:
  • an existing highway-railway at-grade crossing is being redesigned as grade separated to improve traffic operations. The railway
    8·1 answer
  • 1- A square-wave inverter has a dc source of 96 V and an output frequency of 60 Hz. The load is a series RL load with R = 5 Ohm
    7·1 answer
  • I JUST PLAYED A GAME IN 2ND PERSON AND IM CONFEUSED
    15·2 answers
  • Where you live might affect how often you change your cabin air filter.<br> True<br> False
    8·1 answer
  • Which of these are an ethical issue
    14·1 answer
  • Is the MI-24 Hind the most widely exported combat helicopter in the world?
    14·1 answer
  • The forklift exiting an aisle in a warehouse has the right of way?
    15·1 answer
  • 7. If you can't ignore a distraction, what should you do?
    15·1 answer
  • A heating element for a cooking appliance is stretched too far during installation. What action can be performed? A. Dispose of
    7·1 answer
  • 3. (5%) you would like to physically separate different materials in a scrap recycling plant. describe at least one method that
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!