Answer:
0.4778 m/s
Explanation:
To solve this question, we will make use of law of conservation of momentum.
We are given that the rock's velocity is 12 m/s at 35°. Thus, the horizontal component of this velocity is;
V_x = (12 m/s)(cos(35°)) = 9.83 m/s.
Thus, the horizontal component of the rock's momentum is;
(3.5 kg)(9.83 m/s) = 34.405 kg·m/s.
Since the person is not pushed up off the ice or down into it, his momentum will have no vertical component and so his momentum will have the same magnitude as the horizontal component of the rock's momentum.
Thus, to get the person's speed, we know that; momentum = mass x velocity
Mass of person = 72 kg and we have momentum as 34.405 kg·m/s
Thus;
34.405 = 72 x velocity
Velocity = 34.405/72
Velocity = 0.4778 m/s
The distance covered by an object accelerating from rest is
D = (1/2) · (acceleration) · (time)² .
In this particular case, 'acceleration' is 9.8 m/s² ... due to gravity.
D = (1/2) · (9.8 m/s²) · (1.67 s)²
D = (4.9 m/s²) · (2.789 s²)
D = 13.67 meters
Because the box keeps going straight at the same speed, while the seat under it speeds up, slows down, or changes direction.
Answer:
40 Hz
Explanation:
f = 1/T = 1 / 0.025 = 40 Hz