Answer:
The rate would be lower and the concentration of reactants would be lower.
Explanation:
The rate of a chemical reaction depends on the rate constant and the concentration of reactants.
For Ex:
For a reaction experimentally given by A + B ----> C + D
Rate = k[A][B]
where k is the rate constant
[A] = concentration of reactant A
[B] = concentration of reactant B
As the reaction proceeds,the concentration of reactant decrease and concentration of products increase.Rate constant k depends only on temperature and activation energy.Hence it will remain constant throughout the reaction assuming that reaction is carried out at constant temperature and pressure.
Hence rate will depend only on concentration of reactants and hence decrease with decrease in concentration of reactants.
The first statement (Matter is neither created nor destroyed) is correct.
The second statement would violate the law of conservation of mass (I will refer to this as LCM), as it would mean matter can "flow" into the universe, but not out, meaning the total matter will never be less than it was before.
The third statement violates LCM because it means matter is created during a reaction, which is not true.
The last statement violates LCM because it means matter is lost during a reaction, which is not true.
Answer: An increase in the ratio of insulin to glucagon will increase the activity of --
- Acetyl-CoA carboxylase(+)
-Phosphofructokinase PFK2(+)
-Glycogen synthase(+)
- Hormone sensitive lipase (-). The hormone sensitive lipase activity is not increased with increased insulin activity.
Explanation: increased insulin - glucagon ratio is usually high in fed state.Insulin helps the cells absorb glucose, reducing blood sugar and providing the cells with glucose for energy. When blood sugar levels are too low, the pancreas releases glucagon. Glucagon instructs the liver to release stored glucose, which causes blood sugar to rise.
Data can arranged into visual displays called graphs. There are multiple types of graphs such as bar graphs, line graphs, scatter plots, and pie charts.
hopefully this helps :)
Answer:
Explanation:
Water is called the universal solvent. It is a polar molecule (105 degree angle between the H atoms) that gives it a + and a - side so to speak....which allows it to 'pull apart' substances....overcome their intra-molecular attractions to each other ...i.e. disssovle them