To solve this problem it is necessary to apply the concepts related to the described wavelength through frequency and speed. Mathematically it can be expressed as:

Where,
Wavelength
f = Frequency
v = Velocity
Our values are given as,

Speed of sound
Keep in mind that we do not use the travel speed of the ambulance because we are in front of it. In case it approached or moved away we should use the concepts related to the Doppler effect:
Replacing we have,


Therefore the frequency that you hear if you are standing in from of the ambulance is 0.1214m
Answer:
λ = 6.602 x 10^(-7) m
Explanation:
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is given as ;
y = mλD/d
Where;
D is the distance of the screen from the slits = 6.2 m
d is the distance between the two slits = 0.046 mm = 0.046 x 10^(-3) m
The fringes on the screen are 8.9 cm = 0.089 m apart from each other, this means that the first maximum (m=1) is located at y = 0.089 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
y = mλD/d
So, λ = dy/mD
Thus,
λ = (0.046 x 10^(-3) x 0.089)/(1 x 6.2)
λ = 6.602 x 10^(-7) m
Answer:
troposphere and stratosphere
Answer:
Explanation:
1) The time of flight equation for projectile motion can be used here to find total time in air.
t = 2vsin∅ / g
where v is speed, Ф is launch angle
t = 2×4×sin 60 / 9.8
t = 0.71 seconds
2) Distance where it hit the ground is called as range and has the following standard equation
D = v² sin2Ф/g
D = 4²sin 2×60 / 9.8
D = 1.41m
3) Maximum elevation is maximum time reached
h = v² sin²Ф / 2g
h = 4²sin² 60 / 2*9.8
h = 0.61 m