<h2>Answer:</h2>
The correct answer is
A) Regular operation
<h2>
Explanation:</h2>
Even those workplaces that have established LO/TO processes face challenges, including: Lack of specific procedures written for each piece of equipment identifying all energy sources and energy isolation devices. Lack of comprehensive safety training for everyone in the workplace. Incorrect tag use.
So, regular operation is the primary cause of LO/TO accidents.
Answer:
a) 2-bromopyrrole
Explanation:
Our options for this questions are:
a) 2-bromopyrrole
b) 2,3-dibromopyrrole
c) N-bromopyrrole
d) 3-bromopyrrole
To understand how the reaction works we have to start with the <u>resonance structures</u>. (Figure 1), on these structures, we will obtain a n<u>egative charge on carbon 2</u> in the pyrrole ring, therefore on this carbon we can generate an attack to an electrophile.
The second step is to check how the mechanism take place. An <u>electrophile is generated</u> by the
and
. This electrophile can be <u>attacked</u> by the negative charge on carbon 2 producing the 2-bromopyrrole. (See figure 2).
I hope it helps!
Sucrose, a sweet, white crystalline substance, C12 H22 O11, OBTAINED CHIEFLY FROM THE JUICE OF THE SUGAR CANE AND SUGAR BEET, BUT ALSO PRESENT IN SORGHUM, THE sugar maple, some palms, and various other plants, and having extensive nutritional, pharmaceutical, and industrial uses; any of the class of carbohydrates to which this substance belongs, as glucose, levulose, and lactose.
The specific heat is the amount of heat per unit mass required to raise the temperature to 1 degree Celsius. (This is from google)
Answer:
16g of oxygen reacts with 2 g of hydrogen to form 18g of Water