Answer:
4N
Explanation:
because the net force is greater in the right direction
Answer:



Explanation:
Notice that this is a circuit with resistors R1 and R2 in parallel, connected to resistor R3 in series. It is what is called a parallel-series combination.
So we first find the equivalent resistance for the two resistors in parallel:

By knowing this, we can estimate the total current through the circuit,:

So approximately 0.17 amps
and therefore, we can estimate the voltage drop (V3) in R3 uisng Ohm's law:

So now we know that the potential drop across the parellel resistors must be:
10 V - 4.28 V = 5.72 V
and with this info, we can calculate the current through R1 using Ohm's Law:

Answer:
See the explanation below.
Explanation:
The force is a vector therefore we can decompose the force into components x & y. as we need the horizontal component of the force, we must use the cosine function of the angle.
![F_{1x}=30.8*cos(20)\\F_{1x}=28.94[N]\\F_{2x}=34.3*cos(20)\\\\F_{2x}= 32.23[N]](https://tex.z-dn.net/?f=F_%7B1x%7D%3D30.8%2Acos%2820%29%5C%5CF_%7B1x%7D%3D28.94%5BN%5D%5C%5CF_%7B2x%7D%3D34.3%2Acos%2820%29%5C%5C%5C%5CF_%7B2x%7D%3D%2032.23%5BN%5D)
The question is somewhat ambiguous.
-- It's hard to tell whether it's asking about '3 cubic meters'
or (3m)³ which is actually 27 cubic meters.
-- It's hard to tell whether it's asking about '100 cubic feet'
or (100 ft)³ which is actually 1 million cubic feet.
I'm going to make an assumption, and then proceed to
answer the question that I have invented.
I'm going to assume that the question is referring to
'three cubic meters' and 'one hundred cubic feet' .
OK. We'll obviously need to convert some units here.
I've decided to convert the meters into feet.
For 1 meter, I always use 3.28084 feet.
Then (1 meter)³ = 1 cubic meter = (3.28084 ft)³ = 35.31 cubic feet.
So 3 cubic meters = (3 x 35.31 cubic feet) = 105.9 cubic feet.
That's more volume than 100 cubic feet.