The bare wires that have electricity flowing through them that could kill or seriously injure a person.
Answer:
62 N
Explanation:
Sum of the forces on the toolbox:
∑F = ma
T − mg = ma
T = mg + ma
T = m (g + a)
T = (5.0 kg) (9.8 m/s² + 2.5 m/s²)
T = 61.5 N
Rounded to two significant figures, the force exerted by the rope is 62 N.
Answer:
The second material's index of refraction is 1.17.
Explanation:
Given that,
Refractive index of the material, n = 1.29
Critical angle is 65.9 degrees.
We need to find the second material's index of refraction. We know that at critical angle of incidence, angle of refraction is equal to 90 degrees. Using Snell's law as:

So, the second material's index of refraction is 1.17.
Answer:
I = 1.06886 N s
Explanation:
The expression for momentum is
I = F t = Δp
therefore the momentum is a vector quantity, for which we define a reference system parallel to the floor
Let's find the components of the initial velocity
sin 28.2 = v_y / v
cos 28.2= vₓ / v
v_y = v sin 282
vₓ = v cos 28.2
v_y = 42.8 sin 28.2 = 20.225 m / s
vₓ = 42.8 cos 28.2 = 37.72 m / s
since the ball is heading to the ground, the vertical velocity is negative and the horizontal velocity is positive, it can also be calculated by making
θ = -28.2
v_y = -20.55 m / s
v_x = 37.72 m / s
X axis
Iₓ = Δpₓ = 
since the ball moves in the x-axis without changing the velocity, the change in moment must be zero
Δpₓ = m
- m v₀ₓ = 0
v_{fx} = v₀ₓ
therefore
Iₓ = 0
Y axis
I_y = Δp_y = p_{fy} -p_{oy}
when the ball reaches the floor its vertical speed is downwards and when it leaves the floor its speed has the same modulus but the direction is upwards
v_{fy} = - v_{oy}
Δp_y = 2 m v_{oy}
Δp_y = 2 0.0260 (20.55)
= 1.0686 N s
the total impulse is
I = Iₓ i ^ + I_y j ^
I = 1.06886 j^ N s