Answer:
<em>Infrared telescope and camera</em>
<em></em>
Explanation:
An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.
Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, <em>Infrared images is better used, since they are able to penetrate the surrounding clouds of dust,</em> and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.
The miracle year for Albert Einstein was the year 1905 within which he published so many renowned papers.
<h3>When was Einstein miracle year?</h3>
The miracle year for Albert Einstein was the year 1905 within which he published so many renowned papers in a short time and became very popular.
His mindset in that year was one that challenged the orthodox explanations and sought to think outside the box.
Learn more about Albert Einstein:brainly.com/question/2964376
#SPJ1
Answer:
C. Angle of Attack.
Explanation:
The pilot must adjust the angle of attack parameter. The angle of attack of this plane to get to the desired lift coefficient.
And thus, we have
Lift = Weight
Answer:
eukaryotic cells
Explanation:
"Smooth endoplasmic reticulum (sER) is (a part of) endoplasmic reticulum that is tubular in form and lacks ribosomes. It is present in eukaryotic cells and is associated with lipid synthesis, carbohydrate metabolism, regulation of calcium concentration, and drug detoxification"
source: biologyonline
Answer:
The bit take to reach its maximum speed of 8,42 x10^4 rad/s in an amount of 1.097 seconds.
Explanation:
ω1= 1.72x10^4 rad/sec
ω2= 5.42x10^4 rad/sec
ωmax= 8.42x10^4 rad/sec
θ= 1.72x10^4 rad

α=7.67 x10^4 rad/sec²
t= ωmax / α
t= 8.42 x10^4 rad/sec / 7.67 x10^4 rad/sec²
t=1.097 sec