1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Morgarella [4.7K]
3 years ago
8

A 2.29N force is applied to the plunger of a hypodermicneedle.

Physics
1 answer:
Ede4ka [16]3 years ago
6 0

Answer:

0.04651 N

Explanation:

F_1 = Force on plunger = 2.29 N

d_1 = Diameter of plunger = 1.27 cm

d_2 = Diameter of needle = 0.181 cm

F_2  = Force on needle

From Pascal's law we have

\dfrac{F_1}{A_1}=\dfrac{F_2}{A_2}\\\Rightarrow F_2=\dfrac{F_1\times A_2}{A_1}\\\Rightarrow F_2=\dfrac{2.29\times \pi\dfrac{0.181^2}{4}}{\dfrac{\pi 1.27^2}{4}}\\\Rightarrow F_2=0.04651\ N

The force with which the fluid leaves the needle is 0.04651 N

You might be interested in
A block of unknown mass is attached to a spring with a spring constant of 7.00 N/m 2 and undergoes simple harmonic motion with a
KatRina [158]

Answers:

a) 0.80 kg

b) 2.12 s

c) 1.093 m/s^{2}

Explanation:

We have the following data:

k=7 N/m is the spring constant

A=12.5 cm \frac{1 m}{100 cm}=0.125 m is the amplitude of oscillation

V=32 cm/s=0.32 m/s is the velocity of the block when x=\frac{A}{2}=0.0625 m

Now let's begin with the answers:

<h3>a) Mass of the block</h3>

We can solve this by the conservation of energy principle:

U_{o}+K_{o}=U_{f}+K_{f} (1)

Where:

U_{o}=k\frac{A^{2}}{2} is the initial potential energy

K_{o}=0  is the initial kinetic energy

U_{f}=k\frac{x^{2}}{2} is the final potential energy

K_{f}=\frac{1}{2} m V^{2} is the final kinetic energy

Then:

k\frac{A^{2}}{2}=k\frac{x^{2}}{2}+\frac{1}{2} m V^{2} (2)

Isolating m:

m=\frac{k(A^{2}-x^{2})}{V^{2}} (3)

m=\frac{7 N/m((0.125 m)^{2}-(0.0625 m)^{2})}{(0.32 m/s)^{2}} (4)

m=0.80 kg (5)

<h3>b) Period</h3>

The period T is given by:

T=2 \pi \sqrt{\frac{m}{k}} (6)

Substituting (5) in (6):

T=2 \pi \sqrt{\frac{0.80 kg}{7 N/m}} (7)

T=2.12 s (8)

<h3>c) Maximum acceleration</h3>

The maximum acceleration a_{max} is when the force is maximum F_{max}, as well :

F_{max}=m.a_{max}=k.x_{max} (9)

Being x_{max}=A

Hence:

m.a_{max}=kA (10)

Finding a_{max}:

a_{max}=\frac{kA}{m} (11)

a_{max}=\frac{(7 N/m)(0.125 m)}{0.80 kg} (12)

Finally:

a_{max}=1.093 m/s^{2}

5 0
3 years ago
What cell organelle is necessary for cellular respiration
podryga [215]
It is the cytoplasm.
4 0
3 years ago
Read 2 more answers
If the Sun suddenly went dark, we would not know it until its light stopped arriving on Earth. How long would that be, in second
Gre4nikov [31]

Answer: 500 s

Explanation:

Speed v is defined as a relation between the distance d and time t:

v=\frac{d}{t}

Where:

v=3(10)^{8}m/s is the speed of light in vacuum

d=1.5(10)^{11}m is the distance between the Earth and Sun

t is the time it takes to the light to travel the distance d

Isolating t:

t=\frac{d}{v}

t=\frac{1.5(10)^{11}m}{3(10)^{8}m/s}

Finally:

t=500 s

5 0
3 years ago
How do scientists use the Doppler effect to understand the universe?
professor190 [17]
There's a very subtle thing going on here, one that could blow your mind.

Wherever we look in the universe, no matter what direction we look,
we see the light from distant galaxies arriving at our telescopes with
longer wavelengths than the light SHOULD have.

The only way we know of right now that can cause light waves to get
longer after they leave the source is motion of the source away from
the observer. The lengthening of the waves on account of that motion
is called the Doppler effect.  (The answer to the question is choice-c.)

But that may not be the only way that light waves can get stretched.  It's
the only way we know of so far, and so we say that the distant galaxies
are all moving away from us. 

From that, we say the whole universe is expanding, and that right there is
one of the strongest observations that we explain with the Big Bang theory
of creation.

Now:  If ... say tomorrow ... a competent Physicist discovers another way
for light waves to get stretched after they leave the source, then the whole
"expanding universe" idea is out the window, and probably the Big Bang
theory along with it !


Now that our mind has been blown, come back down to Earth with me,
and I'll give you something else to think about:

It's true that when we look at distant galaxies, we do see their light
arriving in our telescopes with longer wavelengths than it should have.
And then we use the Doppler effect to calculate how fast that galaxy
is moving away from us.  That's all true.  Astronomers are doing it
every day.                                   I mean every night.

So here's the question for you to think about ... maybe even READ about:

When the light from a distant galaxy pours into our telescope, and we
look at it, and we measure its wavelength, and we find that the wavelength
is longer than it should be ... how do we know what it should be ? ? ?
6 0
3 years ago
Read 2 more answers
In Niels Bohr's 1913 model of the hydrogen atom, the single electron is in a circular orbit of radius 5.29×10⁻¹¹m and its speed
Svet_ta [14]

The magnitude of the magnetic moment due to the electron's motion is 87.87 * 10^{-37}.

<h3>What is magnetic moment?</h3>

The magnetic pull and direction of a magnet or other object that produces a magnetic field are referred to as the magnetic moment in electromagnetism. Things that have magnetic moments include electromagnets, permanent magnets, various compounds, elementary particles like electrons, and a number of celestial objects (such as many planets, some moons, stars, etc).

The term "magnetic moment" really refers to the magnetic dipole moment of a system, which is the portion of the magnetic moment that can be represented by an equivalent magnetic dipole or a pair of magnetic north and south poles that are only very slightly apart. The magnetic dipole component is adequate for sufficiently small magnets or over sufficiently large distances.

Calculations:

radius= 5.29 * 10^{-11} m\\

velocity=2.9* 10^{6} m/s

Working formula, M=N/A

I=\frac{charge flow }{time taken} =\frac{e}{time taken\\}

T= \frac{2xr}{v} =\frac{2xx * 5.29 * 10^{-11} }{2.9* 10^{6} }

   =15.16 * 10^{-5} s

I= \frac{1.6 * 10^{-19} }{15.16 * 10^{-5} }= 0.10 * 10^{-14}

                     =1 * 10^{-15} C

M=1x (1* 10^{-15} * (5.29 * 10^{-11} )^{2}

  =87.87 * 10^{-37}

To learn more about magnetic moment ,visit:

brainly.com/question/14298729

#SPJ4

4 0
1 year ago
Other questions:
  • Name one thing that causes domains of a magnets atoms to lose alignment
    13·2 answers
  • Clem's credit score is 733, while Ingrid's credit score is 688. how much more would Ingrid have to pay per month than Clem?
    9·2 answers
  • A battery establishes a voltage V on a parallel-plate capacitor. After the battery is disconnected, the distance between the pla
    8·1 answer
  • It takes a car 2 hours to travel 50 miles. Why is the average speed of the car
    5·2 answers
  • What are some errors made while doing measuring with a triple beam balance lab
    5·2 answers
  • The experiments Galileo performed, such as rolling a ball down an inclined plane, are important because they
    13·1 answer
  • PLEASE HELP ASAP!!!!!! <br> What should each experiment only have one of? <br> variable or constant
    12·2 answers
  • Mechanical advantage of a machine can be increased by designing it for:
    9·1 answer
  • An object is moving from north to south what is the direction of the force of friction of the object
    10·2 answers
  • g What is the final velocity of a hoop that rolls without slipping down a 6.92 m high hill, starting from rest
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!