Event 1 is an example of a chemical reaction.
<u>Explanation:</u>
Whenever there is a chemical reaction, we can find that by means of a color change, formation of any gas, vapors, bubbles or any color or colorless precipitation, or by means of heat generation.
In the event 1 there is only a clear liquid in the beaker again it is added to a clear liquid in another beaker, forming an orange colored liquid , which shows that there is an occurrence of some chemical reaction.
So Event 1 is most likely an example of a chemical reaction.
Answer:
A, they get their food in the same way.
Explanation:
Some fungi can be toxic or poisonous.
Example: mushrooms. Mushrooms typically are found in forests and meadows/plains.
Some fungi are glowing, brown, and in many forms/shapes.
In conclusion, fungi all get nutrient from the dirt they grew in, forests can be moist which gives fungi excellent places to form, usually around trees, because they can absorb plenty of nutrients from the dirt.
Answer:
2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.
12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution
Explanation:
First, by definition of solubility, in 100 g of water there are 0.0016 g of CaF₂. So, to know how many moles are 0.0016 g, you must know the molar mass of the compound. For that you know:
- Ca: 40 g/mole
- F: 19 g/mole
So the molar mass of CaF₂ is:
CaF₂= 40 g/mole + 2*19 g/mole= 78 g/mole
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 0.0016 grams of the compound how many moles are there?

moles=2.05*10⁻⁵
<u><em>2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.</em></u>
Now, to answer the following question, you can apply the following rule of three: if by definition of density in 1 mL there is 1 g of CaF₂, in 1000 mL (where 1L = 1000mL) how much mass of the compound is there?

mass of CaF₂= 1000 g
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 1000 grams of the compound how many moles are there?

moles=12.82
<u><em>12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution</em></u>
Answer:
382.5J
Explanation:
<em>Use the formula:</em>
E = mcΔθ or Q = mcΔT
m = 100g
c = 0.45 J/g°C
ΔT or Δθ = 110 - 25 = 85°
<em>Sub in the values:</em>
E = 100 × 0.45 × 85
= 382.5J