Answer:
True
Explanation:
Yes absolutely the food which provede us energy is termed as healthy..
Answer:
v₀ = 280.6 m / s
Explanation:
we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy,
We write the mechanical energy when the shock has passed the bodies
Em₀ = K = ½ (m + M) v²
We write the mechanical energy when the spring is in maximum compression

½ (m + M) v² = ½ k x²
Let's calculate the system speed
v = √ [k x² / (m + M)]
v = √[152 ×0.78² / (0.012 +0.109) ]
v = 27.65 m / s
This is the speed of the bullet + Block system
Now let's use the moment to solve the shock
Before the crash
p₀ = m v₀
After the crash

The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved

m v₀ = (m + M) v
v₀ = v (m + M) / m
let's calculate
v₀ = 27.83 (0.012 +0.109) /0.012
v₀ = 280.6 m / s
Answer:
Explanation:
Let v be the velocity acquired by electron in electric field
V q = 1/2 m v²
V is potential difference applied on charge q , m is mass of charge , v is velocity acquired
2400 x 1.6 x 10⁻¹⁹ = .5 x 9.1 x 10⁻³¹ x v²
v² = 844 x 10¹²
v = 29.05 x 10⁶ m /s
Maximum force will be exerted on moving electron when it moves perpendicular to magnetic field .
Maximum force = Bqv , where B is magnetic field , q is charge on electron and v is velocity of electron
= 1.7 x 1.6 x 10⁻¹⁹ x 29.05 x 10⁶
= 79.02 x 10⁻¹³ N .
Minimum force will be zero when electron moves along the direction of magnetic field .
We can salve the problem by using the formula:

where F is the force applied, k is the spring constant and x is the stretching of the spring.
From the first situation we can calculate the spring constant, which is given by the ratio between the force applied and the stretching of the spring:

By using the value of the spring constant we calculated in the first step, we can calculate the new stretching of the spring when a force of 33 N is applied:
