1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alinara [238K]
3 years ago
15

A 234.0 g piece of lead is heated to 86.0oC and then dropped into a calorimeter containing 611.0 g of water that initally is at

24.0oC. Neglecting the heat capacity of the container, find the final equilibrium temperature (in oC) of the lead and water.
Physics
1 answer:
Vaselesa [24]3 years ago
3 0

Answer:24.70 ^{\circ}C

Explanation:

Given

mass of lead piece m_l=234 gm\approx 0.234 kg

mass of water in calorimeter m_w=611 gm\approx 0.611 kg

Initial temperature of water T_w=24^{\circ}C

Initial temperature of lead piece T_l=24^{\circ}C

we know heat capacity of lead and water are 125.604 J/kg-k and 4.184 kJ/kg-k respectively

Let us take T ^{\circ}C be the final temperature of the system

Conserving energy

heat lost by lead=heat gained by water

m_lc_l(T_l-T)=m_wc_w(T-T_w)

0.234\times 125.604(86-T)=0.611\times 4.184\times 1000(T-24)

86-T=\frac{0.611\times 4.184\times 1000}{29.391}(T-24)

86-T=86.97T-2087.49

T=\frac{2173.491}{87.97}=24.70^{\circ}C

You might be interested in
Only the healthy foods we eat provide<br> energy to our body<br> true<br> false
Ilia_Sergeevich [38]

Answer:

True

Explanation:

Yes absolutely the food which provede us energy is termed as healthy..

7 0
3 years ago
A 12.0-g bullet is fired horizontally into a 109-g wooden block that is initially at rest on a frictionless horizontal surface a
kykrilka [37]

Answer:

v₀ = 280.6 m / s

Explanation:

we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy,

We write the mechanical energy when the shock has passed the bodies

   Em₀ = K = ½ (m + M) v²

We write the mechanical energy when the spring is in maximum compression

Em_{f} = K_{e} \\= \frac{1}{2} kx^2\\    Em_0 = Em_{f}

½ (m + M) v² = ½ k x²

Let's calculate the system speed

   v = √ [k x² / (m + M)]

   v = √[152 ×0.78² / (0.012 +0.109) ]

   v = 27.65 m / s

This is the speed of the bullet + Block system

Now let's use the moment to solve the shock

Before the crash

   p₀ = m v₀

After the crash

p_{f} = (m + M) v

The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved

 p_0 =  p_{f}

  m v₀ = (m + M) v

  v₀ = v (m + M) / m

let's calculate

v₀ = 27.83 (0.012 +0.109) /0.012

  v₀ = 280.6 m / s

4 0
3 years ago
África tiene más de 1000 lenguas, pero solo 50 son habladas por más de 500 mil personas, explica si esto es un aspecto positivo
Misha Larkins [42]

Answer:

put it in English please

7 0
3 years ago
An electron is accelerated through 2400 V from rest and then enters a region in which there is a uniform 1.70 T magnetic field.
aalyn [17]

Answer:

Explanation:

Let v be the velocity acquired by electron in electric field

V q = 1/2 m v²

V is potential difference applied on charge q , m is mass of charge , v is velocity acquired

2400 x 1.6 x 10⁻¹⁹ = .5 x 9.1 x 10⁻³¹ x v²

v² = 844 x 10¹²

v = 29.05 x 10⁶ m /s

Maximum force will be exerted on moving electron when it moves perpendicular to magnetic field .

Maximum force = Bqv , where B is magnetic field , q is charge on electron and v is velocity of electron

= 1.7 x 1.6 x 10⁻¹⁹ x 29.05 x 10⁶

= 79.02 x 10⁻¹³ N .

Minimum force will be zero when electron moves along the direction of magnetic field .

5 0
2 years ago
A block weighs 15 n and is suspended from a spring that is attached to the ceiling. the spring stretches by 0.075 m from its uns
Illusion [34]

We can salve the problem by using the formula:

F=kx

where F is the force applied, k is the spring constant and x is the stretching of the spring.


From the first situation we can calculate the spring constant, which is given by the ratio between the force applied and the stretching of the spring:

k=\frac{F}{x}=\frac{15 N}{0.075 m}=200 N/m


By using the value of the spring constant we calculated in the first step, we can calculate the new stretching of the spring when a force of 33 N is applied:

x=\frac{F}{k}=\frac{33 N}{200 N/m}=0.165 m

4 0
3 years ago
Other questions:
  • Write some interesting facts about isaac newton
    14·1 answer
  • In fiction, a symbol can be described as __________.
    10·1 answer
  • A dolphin's tops speed is 17 m/s. If a dolphin swam at this constant velocity for one hour
    7·1 answer
  • What is the difference between time and velocity
    15·1 answer
  • The higher heat capacity of water compared to rock or sediment means that for the same seasonal variation in insolation the land
    5·1 answer
  • How would you describe the magnetic field produced by a current in a straight wire?
    7·2 answers
  • A UHF television loop antenna has a diameter of 11 cm. The magnetic field of a TV signal is normal to the plane of the loop and,
    15·2 answers
  • It is desired to lay off certain horizontal distances for building layouts. The length of the tapes are not 100.00 ft. Determine
    14·1 answer
  • How do I eat Chinese caca
    14·2 answers
  • 5. a new type of hoverboard has been designed to levitate over a copper surface. the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!