The nonpolar end of a soap molecule attaches itself to grease.
Answer:
Mass percentage → 0.074 %
[F⁻] = 741 ppm
Explanation:
Aqueous solution of flouride → [F⁻] = 0.0390 M
It means that in 1L of solution, we have 0.0390 moles of F⁻
We need the mass of solution and the mass of 0.0390 moles of F⁻
Mass of solution can be determined by density:
1g/mL = Mass of solution / 1000 mL
Note: 1L = 1000mL
Mass of solution: 1000 g
Moles of F⁻ → 0.0390 moles . 19g /1 mol = 0.741 g
Mass percentage → (Mass of solute / Mass of solution) . 100
(0.741 g / 1000 g) . 100 = 0.074 %
Ppm = mass of solute . 10⁶ / mass of solution (mg/kg)
0.741 g . 1000 mg/1g = 741 mg
1000 g . 1 kg/1000 g = 1kg
741 mg/1kg = 741 ppm
There are 4 electron pairs (3 bonding and 1 lone pair) so the angle is 107 degrees. The 4 electron pairs are repelled to give a tetrahedral arrangement but the molecule has a pyrimidal shape due to the lone pair.
False.
Its newtons <u>law</u> of gravity. We already know that it works and has been proven.
A <u>theory</u> is an idea, or something that someone believes to be true, but might not be
Answer:
- <u><em>You should expect that the ionic bond in LiBr is stronger than the bond in KBr.</em></u>
<u><em /></u>
Explanation:
The<em> ionic bonds</em> are formed by the electrostatic attraction between the ions, cations and anions.
In KBr the cation is K⁺ and the anion is Br⁻.
In LiBr the cation is Li⁺ and the anion is Br⁻.
You must expect that the bond strength depends mainly on the charges present on each ion and the distance between them.
Nevertheless, the effect of the distance between the radius dominate the trendency of the bond strength, which makes that the ionic strength trend be related to the ionic radius trend.
Lithium is a smaller ion than Potassium (both are in the same group and Lithium is above Potassium).
Thus, you should expect that the Li ion is closer to the Br ion than what the K ion is to the Br ion and expect that the bond between a Li ion and the Br ion be stronger than the bond between the K ion and the Br ion.