When C-C is having a triple bond the hybridization is sp. But I am not sure how to relate that to the linear shape.
a) First, to get ΔG°rxn we have to use this formula when:
ΔG° = - RT ㏑ K
when ΔG° is Gibbs free energy
and R is the constant = 8.314 J/mol K
and T is the temperature in Kelvin = 25 °C+ 273 = 298 K
and when K = 4.4 x 10^-2
so, by substitution:
ΔG°= - 8.314 * 298 *㏑(4.4 x 10^-2)
= -7739 J = -7.7 KJ
b) then, to get E° cell for a redox reaction we have to use this formula:
ΔE° Cell = (RT / nF) ㏑K
when R is a constant = 8.314 J/molK
and T is the temperature in Kelvin = 25°C + 273 = 298 K
and n = no.of moles of e- from the balanced redox reaction= 3
and F is Faraday constant = 96485 C/mol
and K = 4.4 x 10^-2
so, by substitution:
∴ ΔE° cell = (8.314 * 298 / 3* 96485) *㏑(4.4 x 10^-2)
= - 2.7 x 10^-2 V
The grams of water produced is c
Answer:
Here's what I get.
Explanation:
At the end of the reaction you will have a solution of the alcohol in THF.
The microdistillation procedure will vary, depending on the specific apparatus you are using, but here is a typical procedure.
- Transfer the solution to a conical vial.
- Add a boiling stone.
- Attach a Hickman head (shown below) and condenser.
- Place the assembly in in the appropriate hole of an aluminium block on top of a hotplate stirrer.
- Begin stirring and heating at a low level so the THF (bp 63 °C) can distill slowly.
- Use a Pasteur pipet to withdraw the THF as needed.
- When all the THF has been removed, raise the temperature of the Al block and distill the alcohol (bp 143 °C).
Answer: it is soluble
Explanation: nitrates are soluble.