Answer:
The minumum speed the pail must have at its highest point if no water is to spill from it
= 2.64 m/s
Explanation:
Working with the forces acting on the water in the pail at any point.
The weight of water is always directed downwards.
The normal force exerted on the water by the pail is always directed towards the centre of the circle of the circular motion.
And the centripetal force, which keeps the system in its circular motion, is the net force as a result of those two previously mentioned force.
At the highest point of the motion, the top of the vertical circle, the weight and the normal force on the water are both directed downwards.
Net force = W + (normal force)
But the speed of this motion can be lowered enough to a point where the normal force becomes zero at the moment the pail reaches the highest point of its motion. Any speed lower than this value would result in the water spilling out of the pail. The water would not be able to resist the force of gravity.
At this point of minimum velocity,
Normal force = 0
Net force = W
Net force = centripetal force = (mv²/r)
W = mg
(mv²/r) = mg
r = 0.710 m
g = 9.8 m/s²
v² = gr = 9.8 × 0.71 = 6.958
v = √(6.958) = 2.64 m/s
Hope this Helps!!!
At speeds over 30 mph, you should maintain a following distance of at least <u>three full seconds</u> behind the vehicle ahead of you.
As a general rule and common sense at a speed of 30 mph you can leave three full seconds so that you can achieve a prudent distance between the car you are driving and the car in front in order to be able to perform some kind of maneuver if an accident or unforeseen event occurs.
To count the full three seconds you can use the technique of counting the Mississippis as follows: Mississippi one, Mississippi two, Mississippi three.
<h3>What is an accident?</h3>
An accident is an unexpected event that generally causes damage, injury or negative consequences.
Learn more about accident at: brainly.com/question/28070413
#SPJ4
Answer:
The relationship between voltage, current, and resistance is described by Ohm's law. This equation, i = v/r, tells us that the current, i, flowing through a circuit is directly proportional to the voltage, v, and inversely proportional to the resistance, r.
So impulse is a change in momentum.
Mass*(final velocity - initial velocity)
I dont think you will be able to find the average force with the given info because you need to know the time it takes for the car to slow down.