The correct answer is - A. Plants store solar energy; the plants die; the plants are compressed; solar energy is released;
The plants use the solar energy for their functioning, thus they are one of the biggest natural storage of it. The plants also use the CO2 for the process of photosynthesis that is driven by the solar energy. When the plants die, the things inside them are stored in them, and if they are quickly covered they will remain stored and not get back into the atmosphere. The plants than are compressed, and over time that leads to a change in their composition. After millions of years had passed, the solar energy and CO2 had turned into coal. The coal is heavily used by the humans in the past few centuries, and with its burning the solar energy and the CO2 are released back into the atmosphere from which they came millions of years ago.
Option C
In nuclear fission and fusion the mass defect is the mass lost during the reaction that is converted into energy
<u>Explanation:</u>
Mass defect is the contrast within the estimated mass of the released system and the empirically estimated mass of the nucleus. The nuclear binding energy is acknowledged as mass, and that mass enhances "missing".
This missing mass is described as a mass defect, which is nuclear energy, also acknowledged as the mass discharged from the reaction as any trajectories. The mass defect of a nucleus depicts the mass of the energy adhesive of the nucleus and is the variation amidst the mass of a nucleus and the entirety of the masses of the nucleons of which it is comprised.
Answer:
B. Attract each other with a force of 10 newtons.
Explanation:
Statement is incorrectly written. <em>The correct form is: A </em>
<em> charge and a </em>
<em> at a distance of 0.3 meters. </em>
The two particles have charges opposite to each other, so they attract each other due to electrostatic force, described by Coulomb's Law, whose formula is described below:
(1)
Where:
- Electrostatic force, in newtons.
- Electrostatic constant, in newton-square meters per square coulomb.
- Magnitudes of electric charges, in coulombs.
- Distance between charges, in meters.
If we know that
,
and
, then the magnitude of the electrostatic force is:


In consequence, correct answer is B.
Answer:
GREATER than 1 g/cm. 3, it will SINK in water. LESS than 1 g/cm3, it will FLOAT in water. If an object's density is: Density of Object > Density of Liquid.
Explanation:
To calculate and solve the problem it is necessary to apply the concepts related to resistance and resistivity.
The equation that is responsible for relating the two variables is:

Where,
R= Resistance of the conductor
Resistivity of the conductor material
L = Length
A = Cross-sectional area of conductor
With the previous values the area of the muscle (Real Muscle-82%)is,


Using the equation from Resistance we have that at the muscle the value is:



At the same time we can make the same process to calculate the resistance of the fat, then


The resistance of the fat would be,



Then the total resistance in a set as the previously writen, i.e, in parallel is:



We can here apply Ohm's law, then



