1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Orlov [11]
3 years ago
6

The international space station makes 15.65 revolutions per day in its orbit around the earth. assuming a circular orbit, how hi

gh is this satellite above the surface of the earth?
Physics
2 answers:
fiasKO [112]3 years ago
8 0

The International space station is located at the height of \boxed{369\,{\text{km}}}  above the surface of the Earth.

Further Explanation:

The height of the international space station above the surface of the earth is given by the Kepler’s Law of planetary motion. According to this law, the square of time period of the satellite is directly proportional to the cube of the radius of the circular path of the satellite.

Given:

The speed of revolutions made by the International space station is 15.65\,{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{{\text{day}}}}}\right.\kern-\nulldelimiterspace}{{\text{day}}}} .

Concept:

The angular speed of rotation of the International space station is:

\begin{aligned}\omega&=2\pi\times\frac{{15.65}}{{24\times60\times 60}}\,{{{\text{rev}}}\mathord{\left/{\vphantom{{{\text{rev}}}{{\text{sec}}}}}\right.\kern-\nulldelimiterspace}{{\text{sec}}}}\\&=2\pi\times1.811\times{10^{ - 4}}\,{{{\text{rad}}}\mathord{\left/{\vphantom{{{\text{rad}}}{{\text{sec}}}}}\right.\kern-\nulldelimiterspace}{{\text{sec}}}}\\\end{aligned}

The time period of rotation of the International space station is:

T=\frac{{2\pi }}{\omega }

Substitute \omega  in above expression.

\begin{aligned}T&=\frac{{2\pi}}{{2\pi\times1.811\times{{10}^{ - 4}}\,}}\\&=5520.7\,{\text{s}}\\&\approx{\text{5521}}\,{\text{s}}\\\end{aligned}

The expression for the Kepler’s law is:

\begin{aligned}{T^2}&=\left({\frac{{4{\pi ^2}}}{{GM}}}\right){R^3}\\R&={\left({\frac{{GM{T^2}}}{{4{\pi^2}}}}\right)^{\frac{1}{3}}}\\\end{aligned}

Here, G  is the gravitational constant, M  is the mass of the Earth.

Substitute the values in above expression.

\begin{aligned}R&={\left({\frac{{\left( {6.67\times{{10}^{ - 11}}}\right)\times\left({5.98\times{{10}^{24}}}\right)\times{{\left( {5521}\right)}^2}}}{{4\times{{\left({3.14}\right)}^2}}}}\right)^{\frac{1}{3}}}\\&={\left({\frac{{1.21\times{{10}^{22}}}}{{39.48}}}\right)^{\frac{1}{3}}}\\&=6.74\times{10^6}\,{\text{m}}\\\end{aligned}

The radius of the Earth is 6.371\times{10^6}\,{\text{m}} .

The height of space station above the surface of Earth is given below:

\begin{aligned}h&=\left({6.74\times{{10}^6}}\right)-\left({6.371\times{{10}^6}}\right)\\&=3.69\times{10^5}\,{\text{m}}\\&=3{\text{69}}\,{\text{km}}\\\end{aligned}

Thus, the International space station is located at the height of  \boxed{369\,{\text{km}}} above the surface of the Earth.

Learn More:

1. A 30.0-kg box is being pulled across a carpeted floor by a horizontal force of 230 N <u>brainly.com/question/7031524</u>

2. Max and Maya are riding on a merry-go-round that rotates at a constant speed <u>brainly.com/question/8444623 </u>

3. A 50-kg meteorite moving at 1000 m/s strikes earth <u>brainly.com/question/6536722 </u>

Answer Details:

Grade: High School

Subject: Physics

Chapter: Gravitation

Keywords:

International space station, 15.65 revolutions, circular orbit, around the earth, high, satellite, above the surface, 5521 s, 369 km.

sweet-ann [11.9K]3 years ago
7 0
<span>373.2 km The formula for velocity at any point within an orbit is v = sqrt(mu(2/r - 1/a)) where v = velocity mu = standard gravitational parameter (GM) r = radius satellite currently at a = semi-major axis Since the orbit is assumed to be circular, the equation is simplified to v = sqrt(mu/r) The value of mu for earth is 3.986004419 Ă— 10^14 m^3/s^2 Now we need to figure out how many seconds one orbit of the space station takes. So 86400 / 15.65 = 5520.767 seconds And the distance the space station travels is 2 pi r, and since velocity is distance divided by time, we get the following as the station's velocity 2 pi r / 5520.767 Finally, combining all that gets us the following equality v = 2 pi r / 5520.767 v = sqrt(mu/r) mu = 3.986004419 Ă— 10^14 m^3/s^2 2 pi r / 5520.767 s = sqrt(3.986004419 * 10^14 m^3/s^2 / r) Square both sides 1.29527 * 10^-6 r^2 s^2 = 3.986004419 * 10^14 m^3/s^2 / r Multiply both sides by r 1.29527 * 10^-6 r^3 s^2 = 3.986004419 * 10^14 m^3/s^2 Divide both sides by 1.29527 * 10^-6 s^2 r^3 = 3.0773498781296 * 10^20 m^3 Take the cube root of both sides r = 6751375.945 m Since we actually want how far from the surface of the earth the space station is, we now subtract the radius of the earth from the radius of the orbit. For this problem, I'll be using the equatorial radius. So 6751375.945 m - 6378137.0 m = 373238.945 m Converting to kilometers and rounding to 4 significant figures gives 373.2 km</span>
You might be interested in
Drag the titles to the correct boxes to complete the pairs.
PilotLPTM [1.2K]
Can you input a picture??
5 0
3 years ago
Ms. Mary Mack walked around her block from her house for 200 meters. She arrived back at her house in 15 minutes. What was her d
inysia [295]

Answer:

d = 0 [m]

Explanation:

Displacement is understood as the length and direction that a body travels to move from an initial point to an endpoint.

This displacement is represented with a vector or straight line that indicates the distance of the displacement and its length.

This displacement in an easier way to understand. It is the distance between the start point and the endpoint of the journey. Since the second point is equal to the first point, since Mary returns to the same place, there is no difference between the displacement.

Therefore the displacement is zero.

5 0
3 years ago
A 2 kg object with a weight of 20 N is being pulled up by a rope with a tension of 12N what is the acceleration of the object
son4ous [18]

Answer:

The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.

Explanation:

Given;

mass of the object, m = 2 kg

weigh of the object, W = 20 N

tension on the rope, T = 12 N

The acceleration of the object is calculated by applying Newton's second law of motion as follows;

T = F + W

T = ma + W

ma = T - W

a = \frac{T-W}{m} \\\\a = \frac{12 - 20}{2} \\\\a = -4 \ m/s^2 (the negative sign indicates deceleration of the object)

The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.

7 0
3 years ago
A pair of narrow slits, separated by 1.8 mm, is illuminated by a monochromatic light source. Light waves arrive at the two slits
Nastasia [14]

Answer:

750 nm

Explanation:

d  = separation of the slits = 1.8 mm = 0.0018 m

λ = wavelength of monochromatic light

D  = screen distance = 4.8 m

y = position of first bright fringe = \frac{1cm}{5 fringe} = \frac{0.01}{5} = 0.002 m

n  = order = 1

Position of first bright fringe is given as

y = \frac{nD\lambda }{d}

0.002 = \frac{(1)(4.8)\lambda }{0.0018}

λ = 7.5 x 10⁻⁷ m

λ = 750 nm

3 0
3 years ago
A 1500 kg car traveling at 15.0 m/s to the south collides with a 4500 kg truck that is at rest at a stopligt. The car comes to a
Arlecino [84]

Answer:

<em><u>M</u></em><em><u>a</u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u>m</u></em><em><u>a</u></em><em><u>t</u></em><em><u>i</u></em><em><u>c</u></em><em><u>a</u></em><em><u>l</u></em><em><u>l</u></em><em><u>y</u></em><em><u>:</u></em>

That will be

<em>=</em><em> </em><em>1</em><em>5</em><em>0</em><em>0</em><em> </em><em>x</em><em> </em><em>1</em><em>5</em><em> </em><em>x</em><em> </em><em>4</em><em>5</em><em>0</em><em>0</em>

<em>=</em><em> </em><em><u>1</u></em><em><u>0</u></em><em><u>1</u></em><em><u>,</u></em><em><u>2</u></em><em><u>5</u></em><em><u>0</u></em><em><u>,</u></em><em><u>0</u></em><em><u>0</u></em><em><u>0</u></em>

5 0
3 years ago
Other questions:
  • A round loop of wire carries a current of 100 A, has a radius of 10 cm, and its normal (vector) makes an angle of 30∘ with a mag
    12·1 answer
  • What is the direction of magnetic field lines inside any magnet?
    10·1 answer
  • Why are some pots and pans designed with wooden handles?
    9·2 answers
  • A teacher wants to demonstrate that unheated water can boil at room temperature in a beaker within a bell jar connected to a vac
    15·1 answer
  • If energy is transferred spontaneously as heat from a substance with a temperature of T1 to a substance with a temperature of T2
    9·1 answer
  • What is the equivalent of 0° C in Kelvin?<br> Help will give brainiest
    6·1 answer
  • Which equation shows the relationship of wave speed to
    15·1 answer
  • Convert 9.83 m/s with a radius of 0.85 m to rotations per minute (rpm)
    10·1 answer
  • A 2300-kg car slows down at a rate of 3.0 m/s2 when approaching a stop sign. What is the magnitude of the net force causing it t
    7·1 answer
  • According to Newton's Second Law of Motion, an object will accelerate if you apply what kind of force? Question 1 options: Frict
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!