Answer:
Density of 18.0-karat gold mixture is
.
Explanation:
A mixture of 18 parts gold, 5 parts silver, and 1 part copper.
Let mass of gold be 18x
Let the mass of silver be 5x
Let the mass of copper be 1x
The density of gold = 
The density of silver = 
The density of copper =

Volume of the gold in the mixture = 
Volume of the silver in the mixture = 
Volume of the copper in the mixture = 
Mass of the mixture = M = 18x+5x+1x =24x
Volume of the mixture = 
Density of the mixture:

Answer:
Your answer is: K.E = 8.3 J
Explanation:
If the height (h) = 169.2 meters (m) and the mass (m) is 0.005 kilograms (kg) the total energy will be kinetic energy which is equal to the potential energy.
K.E = P.E and also P.E equals to mgh
Then you substitute all the parameters into the formula ↓
P.E = 0.005 × 9.81 × 169.2
P.E = 8.2908 J
So your answer is 8.2908 but if you round it is K.E = 8.3
Answer:
T=13.72N
Explanation:
The tension before the ball is released have no angle is in rest at the same axis of the weight so:
∑F=0
Using Newton law in this case the ball is tied so tension before become to swing is
∑F=FN-T=0




Answer:
v = 2.45 m/s
Explanation:
first we find the time taken during this motion by considering the vertical motion only and applying second equation of motion:
h = Vi t + (1/2)gt²
where,
h = height of cliff = 15 m
Vi = Initial Vertical Velocity = 0 m/s
t = time taken = ?
g = 9.8 m/s²
Therefore,
15 m = (0 m/s) t + (1/2)(9.8 m/s²)t²
t² = (15 m)/(4.9 m/s²)
t = √3.06 s²
t = 1.75 s
Now, we consider the horizontal motion. Since, we neglect air friction effects. Therefore, the horizontal motion has uniform velocity. Therefore,
s = vt
where,
s = horizontal distance covered = 4.3 m
v = original horizontal velocity = ?
Therefore,
4.3 m = v(1.75 s)
v = 4.3 m/1.75 s
<u>v = 2.45 m/s</u>
Given data;
Fn = 10 N
Fs = 7 N
Fe = 4 N
force in X direction (Fx) = 4 N
force in Y direction (Fy) = 10-7 = 3 N
Net force (Fnet) = Sq.root[(Fx)² + (Fy)²]
= Sq root [ 4² + 3² ]
= 25 N
<em> Net force acting = 25 N</em>