Answer:
at 181.0
is -723.3 kJ/mol.
Explanation:
We know, 
where, T is temperature in kelvin.
Let's assume
and
does not change in the temperature range 25.0
- 181.0
.
= (273+181.0) K = 454.0 K
Hence, at 181.0
, ![\Delta G^{0}=(-795.8kJ/mol)-[(454.0 K)\times (-159.8\times 10^{-3}kJ/K.mol)]](https://tex.z-dn.net/?f=%5CDelta%20G%5E%7B0%7D%3D%28-795.8kJ%2Fmol%29-%5B%28454.0%20K%29%5Ctimes%20%28-159.8%5Ctimes%2010%5E%7B-3%7DkJ%2FK.mol%29%5D)
= -723.3 kJ/mol
144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
<h3>What is Ideal Gas Law ? </h3>
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
PV = nRT
where,
P = Presure
V = Volume in liters
n = number of moles of gas
R = Ideal gas constant
T = temperature in Kelvin
Here,
P = 1 atm [At STP]
R = 0.0821 atm.L/mol.K
T = 273 K [At STP]
Now first find the number of moles
F₂ + CaBr₂ → CaF₂ + Br₂
Here 1 mole of F₂ reacts with 1 mole of CaBr₂.
So, 199.89 g CaBr₂ reacts with = 1 mole of F₂
1.28 g of CaBr₂ will react with = n mole of F₂

n = 0.0064 mole
Now put the value in above equation we get
PV = nRT
1 atm × V = 0.0064 × 0.0821 atm.L/mol.K × 273 K
V = 0.1434 L
V ≈ 144 mL
Thus from the above conclusion we can say that 144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
Learn more about the Ideal Gas here: brainly.com/question/20348074
#SPJ4
B the app and then it was just a was the last time you got it to a friend or we
Im unsure :( maybe try looking up a calorie calculator
The answer is wedge to your answer