Answer:
0.006075Joules
Explanation:
The final kinetic energy of the system is expressed as;
KE = 1/2(m1+m2)v²
m1 and m2 are the masses of the two bodies
v is the final velocity of the bodies after collision
get the final velocity using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
0.12(0.45) + 0/12(0) = (0.12+0.12)v
0.054 = 0.24v
v = 0.054/0.24
v = 0.225m/s
Get the final kinetic energy;
KE = 1/2(m1+m2)v
KE = 1/2(0.12+0.12)(0.225)²
KE = 1/2(0.24)(0.050625)
KE = 0.12*0.050625
KE = 0.006075Joules
Hence the final kinetic energy of the system is 0.006075Joules
To place the poles of a 1. 5 v battery to achieve the same electric field is 1.5×10−2 m
The potential difference is related to the electric field by:
∆V=Ed
where,
∆V is the potential difference
E is the electric field
d is the distance
what is potential difference?
The difference in potential between two points that represents the work involved or the energy released in the transfer of a unit quantity of electricity from one point to the other.
We want to know the distance the detectors have to be placed in order to achieve an electric field of
E=1v/cm=100v/cm
when connected to a battery with potential difference
∆v=1.5v
Solving the equation,we find



learn more about potential difference from here: brainly.com/question/28166044
#SPJ4
Answer:
Water in dal lake is test for any heavy metals and pollutant, sewage and drainage system are also monitored for the same.
Explanation:
- Dal lake is located in Srinagar that is the state capital of Kashmir and is known for recreation and tourism purposes. The area covers about 18 km sq. and forms a part of natural wetlands.
- The lake is prone to pollution and has recently undergone restoration measures. To address the problems of eutrophication algae and large-scale microplankton have been removed from the water.
- The government of India has taken various measures to check the pollution by setting up a committee to monitor the proper use of allotted funds.
Explanation:
velocity is distance divided by time.
so
the average speed of the ball is 10m/20s
= 0.5 m/s