<span>Answer: option (1) solubility of the solution increases.
</span><span />
<span>Justification:
</span><span />
<span>The solubility of substances in a given solvent is temperature dependent.
</span><span />
<span>The most common behavior of the solubility of salts in water is that the solubiilty increases as the temperature increase.
</span><span />
<span>To predict with certainty the solubility at different temperatures you need the product solubility constants (Kps), which is a constant of equlibrium of the dissolution of a ionic compound slightly soluble in water, or a chart (usually experimental chart) showing the solubilities at different temperatures.
</span><span />
<span>KClO₃ is a highly soluble in water, so you do not work with Kps.
</span><span />
<span>You need the solubility chart or just assume that it has the normal behavior of the most common salts. You might know from ordinary experience that you can dissolve more sodium chloride (table salt) in water when the water is hot. That is the same with KClO₃.
</span><span>The solubility chart of KlO₃ is almost a straight line (slightly curved upward), with positive slope (ascending from left to right) meaning that the higher the temperature the more the amount of salt that can be dissolved.</span>
Answer:
Scientists use the term magma for molten rock that is underground and lava for molten rock that breaks through the Earth's surface.
1- KNO3 and H2SO4. electrolyte is a liquid that consists of ions, which decomposes during the process of electrolysis, electrolytes will dissolve in liquids, like water. Since KNO3 and H2SO4 both dissolve in water, they are the right answer
Answer:
3.60 mol CO₂
Explanation:
Balanced chemical reaction:
2CO + O₂ ⇒ 2CO₂
The molar ratio between CO₂ and CO is 1:1
2CO₂/2CO = CO₂/CO
Thus, the moles of CO₂ produced from 3.60 moles of CO is 3.60 moles:
(3.60 mol CO)(CO₂/CO) = 3.60 mol CO₂