Answer:
Substitution mutation
Explanation:
A substitution mutation is a type of mutation in which one or more nucleotide base is replaced by another in a sequence. This will result in the replacement of one or more amino acid in the amino acid sequence.
This is the case in this question where the original amino acid sequence was given as: Leucine – Alanine – Glycine – Leucine. After mutation, the following mutated sequence was produced: Leucine – Alanine – Valine – Leucine.
As illustrated above, one would notice that there is replacement of GLYCINE amino acid by VALINE in the mutated sequence, hence, it is an example of SUBSTITUTION MUTATION.
Answer;
The partial negative charge on oxygen would stick out less and be less able to participate in hydrogen bonding.
Explanation;
Water is a polar molecule because the electrons are not shared equally, they're closer to the oxygen atom than the hydrogen.
-Normally, the water molecule is a bent shape because of the pair of lone electrons - they repulse each other and exert a compression to the hydrogen atoms at a slight 104º angle. It is a bent molecular geometry that results from tetrahedral electron pair geometry.
-The 2 lone electron pairs exerts a little extra repulsion on the two bonding hydrogen atoms to create a slight compression to a 104 degrees bond angle. Therefore, the water molecule is bent molecular geometry because the lone electron pairs.
Thus, If water were a linear molecule like co2, electrostatic interactions between water molecules would be much weaker, then the partial negative charge on oxygen would stick out less and be less able to participate in hydrogen bonding.
Answer:
pOH = 11.5
[H⁺] = 0.003 M
[OH⁻] = 3 × 10⁻¹² M
Explanation:
The computation is shown below:
Given that
pH = 2.5
Based on the above information
We know that
pH + pOH = 14 ⇒ pOH = 14 - pH
pOH = 14 - 2.5
pOH = 11.5
[H⁺] = 10^(-pH) = 10^(-2.5)
[H⁺] = 0.003 M
[OH⁻] = 10^(-pOH)
= 10^(-11.5)
= 3 × 10⁻¹² M
[OH⁻] = 3 × 10⁻¹² M
Hence, the above represents the answer
Explanation:
The given data is as follows.
n = 1 mol, 
Q = 1500 J, R = 8.314 J/mol k
(a) 
And, according to the first law of thermodynamics

And, in an isothermal process the change in internal energy of the gas is zero.
Hence, 0 = Q - W
or, W = Q
Expression for work done in an isothermal process is as follows.
W = 
As W = Q, Hence expression for Q will also be given as follows.
Q = 
Now,

[/tex]\Delta S = nR ln \frac{V_{f}}{V_{i}}[/tex]
= 
= nR ln 2
= 
= 5.76 J/K
Therefore, change in entropy is 5.76 J/K.
(b) As, Q = 
= 
= nRT ln 2
T = 
= 
= 260.4 K
Therefore, temperature of the gas is 260.4 K.