1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
4 years ago
10

Assign deliveryCost with the cost (in dollars) to deliver a piece of baggage weighing baggageWeight. The baggage delivery servic

e charges twenty dollars for the first 50 pounds and one dolllar for each additional pound. The baggage delivery service calculates delivery charge by rounding to the next pound. Assume baggageWeight is always greater than 50 pounds.
Engineering
1 answer:
Sholpan [36]4 years ago
4 0

Answer: y = x * 1dollars - 30dollars

Explanation:

Giving that the delivery cost in dollar is potent for all x > = 50 pounds of wght

Y = (x - 50)*1 dollar + c ...equ 1

Y = delivery cost equation in dollars

x = weigt of baggage for delivery

c = 20dollars = down payment for the first 50 pound weight of baggage

Equ 1 becomes

Y = (x)dollars - 50 dollars + 20 dollars

Y = (x) dollars -30 dollars

You might be interested in
I will definitely rate 5 stars/brainliest!!! HELP PLEASE!!! State University must purchase 1,100 computers from three vendors. V
romanna [79]
Why 1+12+ Y3 < 1100
Says the state of university Need to purchase 1100 computers in total, we have the following answer on the way top
3 0
3 years ago
A steel rule can be used to check for
MAXImum [283]
I THINK THE ANSWER IS B BUT IM NOT SURE OK BYE
3 0
3 years ago
The correct area in sq. Inches and sq. Feet is: Select one: a. 966.76 sq. Inches and 8.056 sq. Feet b. 96.676 sq. Inches and 8.0
kogti [31]

Answer:

c. 96.676 sq. Inches and 0.671 sq. Feet

Explanation:

From the list of the given option, we are told to chose the correct area in sq. inches that correspond to sq. Feet.

If we recall from the knowledge of our conversion  table that,

1 sq feet = 144 sq inches

Then, let's confirm if the option were true.

a.  966.76 sq. Inches and 8.056 sq. Feet

Assuming

if 1 sq feet = 8.056

in sq inches, we have ( 8.056 × 144 ) sq inches

= 1160.064 sq. inches

So, 1160.064 sq. inches is equal to 8.056 sq. Feet. Then option 1 is wrong

b. 96.676 sq. Inches and 8.056 sq. Feet

if 1 sq feet = 8.056

in sq inches, we have ( 8.056 × 144 ) sq inches

= 1160.064 sq. inches

So, 1160.064 sq. inches is equal to 8.056 sq. Feet. Then option 2 is wrong/

c. 96.676 sq. Inches and 0.671 sq. Feet

if 1 sq feet = 0.671

in sq inches, we have ( 0.671 × 144 ) sq inches

=  96.624 sq. Inches which is closely equal to 96.676 sq. Inches

Therefore, this is the correct answer as it proves that 96.676 sq. Inches = 0.671 sq. Feet

8 0
3 years ago
If im 14 and your 14 what does that equal
Karo-lina-s [1.5K]

Answer:

hmmmmmmmmmmmmmmmmmmmmmmm

Explanation:

4 0
3 years ago
Read 2 more answers
A piston-cylinder device contains 0.1 m3 of liquid water and 0.9 m² of water vapor in equilibrium at 800 kPa. Heat is transferre
docker41 [41]

Answer:

Initial temperature = 170. 414 °C

Total mass = 94.478 Kg

Final volumen = 33.1181 m^3

Diagram  = see picture.

Explanation:

We can consider this system as a close system, because there is not information about any output or input of water, so the mass in the system is constant.  

The information tells us that the system is in equilibrium with two phases: liquid and steam. When a system is a two phases region (equilibrium) the temperature and pressure keep constant until the change is completed (either condensation or evaporation). Since we know that we are in a two-phase region and we know the pressure of the system, we can check the thermodynamics tables to know the temperature, because there is a unique temperature in which with this pressure (800 kPa) the system can be in two-phases region (reach the equilibrium condition).  

For water in equilibrium at 800 kPa the temperature of saturation is 170.414 °C which is the initial temperature of the system.  

to calculate the total mass of the system, we need to estimate the mass of steam and liquid water and add them. To get these values we use the specific volume for both, liquid and steam for the initial condition. We can get them from the thermodynamics tables.

For the condition of 800 kPa and 170.414 °C using the thermodynamics tables we get:

Vg (Specific Volume of Saturated Steam) = 0.240328 m^3/kg

Vf (Specific Volume of Saturated Liquid) = 0.00111479 m^3/kg

if you divide the volume of liquid and steam provided in the statement by the specific volume of saturated liquid and steam, we can obtain the value of mass of vapor and liquid in the system.

Steam mass = *0.9 m^3 / 0.240328 m^3/kg = 3.74488 Kg

Liquid mass = 0.1 m^3 /0.00111479 m^3/kg = 89.70299 Kg  

Total mass of the system = 3.74488 Kg + 89.70299 Kg = 93,4478 Kg

If we keep the pressure constant increasing the temperature the system will experience a phase-change (see the diagram) going from two-phase region to superheated steam. When we check for properties for the condition of P= 800 kPa and T= 350°C we see that is in the region of superheated steam, so we don’t have liquid water in this condition.  

If we want to get the final volume of the water (steam) in the system, we need to get the specific volume for this condition from the thermodynamics tables.  

Specific Volume of Superheated Steam at 800 kPa and 350°C = 0.354411 m^3/kg

We already know that this a close system so the mass in it keeps constant during the process.

 

If we multiply the mass of the system by the specific volume in the final condition, we can get the final volume for the system.  

Final volume = 93.4478 Kg * 0.354411 m^3/kg = 33.1189 m^3

You can the P-v diagram for this system in the picture.  

For the initial condition you can calculate the quality of the steam (measure of the proportion of steam on the mixture) to see how far the point is from for the condition on all the mix is steam. Is a value between 0 and 1, where 0 is saturated liquid and 1 is saturated steam.  

Quality of steam = mass of steam / total mass of the system

Quality of steam = 3.74488 Kg /93.4478 Kg = 0,040 this value is usually present as a percentage so is 4%.  

Since this a low value we can say that we are very close the saturated liquid point in the diagram.  

6 0
4 years ago
Other questions:
  • You are working in a lab where RC circuits are used to delay the initiation of a process. One particular experiment involves an
    13·1 answer
  • A rotating cup viscometer has an inner cylinder diameter of 2.00 in., and the gap between cups is 0.2 in. The inner cylinder len
    9·1 answer
  • A heat pump designer claims to have an air-source heat pump whose coefficient of performance is 1.8 when heating a building whos
    10·1 answer
  • Consider the two wood pieces that are connected by a velcro as indicated below. The block is subjected to a tension force P and
    6·2 answers
  • Exhaust gases entering a convergent nozzle have a total pressure (Pt) of 200 kPa and total temperature (Tt) of 800 K. The gases
    5·2 answers
  • 8.2.1: Function pass by reference: Transforming coordinates. Define a function CoordTransform() that transforms the function's f
    8·1 answer
  • Request for proposal (RFP) is a type of document that contains the information and proposals mostly through the bidding process.
    14·1 answer
  • Structural engineers use wireless sensor networks to monitor the condition of dams and bridges.
    9·1 answer
  • Many of the products that we eat and drink are advanced manufactured products. Is this statement TRUE or FALSE?
    12·1 answer
  • You find an unnamed fluid in the lab we will call Fluid A. Fluid A has a specific gravity of 1.65 and a dynamic viscosity of 210
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!