Answer:
μ = 0.55
Explanation:
Given that
Normal weight = 1.8 x weight of person
N= 1.8 mg
We know that friction force Fr
Fr= μ N
μ=Coefficient of friction
N=Normal force
To find μ We have to equate friction and gravity force
Fr= Wt
μ N = m g
μ x 1.8 m g = m g
μ = 0.55
So the coefficient of friction will be 0.55.
Answer:
Vout= 93.3V
Explanation:
For this question, consider circuit in the attachment 1.
This is the circuit of an inverting amplifier. In an inverting amplifier
Vout/Vin= -Rf/Rin
To calculate the Vout, we must find Rin and Vin. For this we must solve the input circuit (attachment 2) using Thevinine theorem. Thevnine theorem states that all voltage sources in a circuit can be replaced by an equivalent voltage source Veq and and all resistances can be replaced by an equivalent resistance Req. To find out Req all voltage sources must be short circuited (attachment 3)
1/Req= 1/R1+1/R2+1/R3
1/Req=1/6+1/3+1/3
Req=6/5
To find out Veq consider circuit in attachment 4. We will solve this circuit using nodal analysis. In nodal analysis, we use the concept that sum of currents entering a node is equal to the sum of currents leaving a node. So,
I1= I2+I3
(10-Veq)/6= (Veq-5)/3+(Veq-10)/3
Veq=8V
Now the input circuit can be simplified as shown in attachment 5. Solve for Vout using equation
Vout/Veq= -Rf/Req
Vout/8= -14/(6/5)
Vout= - 93.3
It is at an angle of 180° from Veq
Answer:
Technician A is wrong
Technician B is right
Explanation:
voltage drop of 0.8 volts on the starter ground circuit is not within specifications. Voltage drop should be within the range of 0.2 V to 0.6 V but not more than that.
A spun bearing can seize itself around the crankshaft journal causing it not to move. As the car ignition system is turned on, the stater may draw high current in order to counter this seizure.
Answer:
I think answer is The type of load, Environment factors