Answer:
- using System;
- public class Program
- {
- public static void Main()
- {
- Console.WriteLine("Enter number of students: ");
- int num = Convert.ToInt32(Console.ReadLine());
- string [] firstName = new string[num];
- string [] lastName = new string[num];
-
- for(int i=0 ; i < num; i++){
- Console.WriteLine("Enter first name: ");
- firstName[i] = Console.ReadLine();
-
- Console.WriteLine("Enter last name: ");
- lastName[i] = Console.ReadLine();
- }
-
- for(int j=0; j < num; j++){
- Console.WriteLine(lastName[j] + "," + firstName[j]);
- }
- }
- }
Explanation:
Firstly, prompt user to enter number of student to be stored (Line 6- 7). Next, create two array, firstName and lastName with num size (Line 8-9).
Create a for-loop to repeat for num times and prompt user to enter first name and last name and then store them in the firstName and lastName array, respectively (Line 11 - 17).
Create another for loop to traverse through the lastName and firstName array and display the last name and first name by following the format given in the question (Line 19 - 21).
Answer: The exit temperature of the gas in deg C is
.
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa, 

We know that for an ideal gas the mass flow rate will be calculated as follows.

or, m = 
=
= 10 kg/s
Now, according to the steady flow energy equation:




= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
= 
Therefore, we can conclude that the exit temperature of the gas in deg C is
.
The lightning efficiency based on the scenario depicted will be C. 56 lumens/Watt, more efficient.
<h3>How to calculate the lightning efficiency</h3>
The efficiency of the incandescent bulb will be:
= 450/40 = 11.25 lumens per watt.
The efficiency of the LED bulb will be:
= 450/8 = 56 lumens per watt.
In this case, the LED bulb is more efficient than the incandescent bulb.
Therefore, the lighting efficiency will be 56 lumens/Watt, more efficient
Learn more lightning efficiency on:
brainly.com/question/25927632
Answer:
The detailed explanation of answer is given in attached file.
Explanation:
Answer:
40 ft
Explanation:
Assuming no loss of energy in the system of pulleys, the work done is the same whether you move the load directly or through the pulleys.
W = Fd . . . . . . . . work is the product of force and distance
F(10 ft) = (0.25F)(d) . . . . . where d is the distance we want to find
d = 10F/(0.25F) = 40
The rope will need to move 40 feet.