The atomic number represents the number of protons in an atom's nucleus. In an uncharged atom, the number of protons is always equal to the number of electrons. For example, carbon atoms include six protons and six electrons, so carbon's atomic number is 6.
Answer:
answer #1 used throughout the world to power devices, appliances and methods of transportation utilized in daily life. To make things operate, electrical energy must be emitted from energy sources such as power plants, to enable an object to consume the power it needs to function. ((if you want to cut it down short use the two first sentences))
answer #2 We get solar heat energy from the sun, and sunlight can also be used to produce electricity from solar
Explanation:
Answer:
Increasing the temperature will cause chemical changes to occur faster. Decreasing the temperature, causes the particles to lose energy which causes them to move around less and slower. The less they move, the less collisions occur, and the less reactions occur between the chemicals = slower reaction rate.
Explanation:
Answer:
A. Plants
Explanation:
Plants are producers, which make their own food. Other organisms, such as rodents, birds, and wild cats, are consumers, which receive their energy from plants or other consumers.
Answer:
1) 0.3g Mg
2)0.5g MgO
3)0.2g O
4)0.01mol Mg & 0.01mol O
5)0.01mol MgO
6) Empirical formula MgO
Explanation:
The mass og Mg is obtained by substracting 24.36g from 24.66g:
24.66 - 24.36 = 0.3g Mg
The ignition of Mg means that it's reacting with oxygen to form an oxide. The increase in the crucible mass after the Mg ignition is due to the addition of oxygen. However, the addition of few drops of water produces a new compound: a hydroxide. According to the oxidation state og Mg (2+), the only magnesium oxide possible is MgO. It happens because the oxidation state of oxygen in oxides is 2-. Which means that just one oxygen atom is required to electrically neutralize one magnesium atom.
We can use a conversion factor to know how much MgO is made from from 0.3 g of Mg:
*
= 0.2g O
Thereby the mass of the oxide is 0.2g O + 0.3g Mg = 0.5g MgO
We convert the mass of oxygen and magnesium to the respective amounts in moles by using conversion factors:
*
= 0.01mol O
*
= 0.01mol Mg
The moles of MgO can be obtained from:
*
= 0.01mol MgO
To obtain the empirical formula, the amount fo moles of each elements must be divided by the smallest one, in this case, 0.01.
The result for both number of Mg atoms and O atoms is 1. This can be interpreted to mean that there is a Mg atom for each O atom forming the formula unit of the compound.
The step when water is added to the compound resulting after heating does not affect the calculations necessary for the magnesium oxide.