Answer:
5. 9GmM/(10R)
Explanation:
m is the mass of the satellite
M is the mass of the earth
W is the energy required to launch the satellite
Energy at earth surface = Potential energy (PE) + W
W = Energy at earth surface - Potential energy (PE)
But PE = 
Therefore: W = Energy at earth surface - 
Energy at earth surface (E) at an altitude of 5R = 
But 
Therefore: 
W = E - PE

Answer:

between the plates.
Explanation:
The equation for change of voltage between two points separated a distance d inside parallel conducting plates (<em>which have between them constant electric field</em>) is:

So to calculate our electric field strength we use the fact that the potential 8.8 cm from the zero volt plate is 475 V:

And we use the fact that the plates are 9.2cm apart to calculate the voltage between them:

Answer:
v₀ = 16.55 m/s
Explanation:
This motion of the ball can be modeled as a projectile motion with following data:
R = Range of Projectile = 27.5 m
θ = Launch Angle = 50°
g = acceleration due to gravity = 9.81 m/s²
v₀ = Initial Speed of Ball = ?
Therefore, using formula for range of projectile, we have:

<u>v₀ = 16.55 m/s</u>
Answer:
The observed frequency by the pedestrian is 424 Hz.
Explanation:
Given;
frequency of the source, Fs = 400 Hz
speed of the car as it approaches the stationary observer, Vs = 20 m/s
Based on Doppler effect, as the car the approaches the stationary observer, the observed frequency will be higher than the transmitted (source) frequency because of decrease in distance between the car and the observer.
The observed frequency is calculated as;
![F_s = F_o [\frac{v}{v_s + v} ] \\\\](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7Bv%7D%7Bv_s%20%2B%20v%7D%20%5D%20%5C%5C%5C%5C)
where;
F₀ is the observed frequency
v is the speed of sound in air = 340 m/s
![F_s = F_o [\frac{v}{v_s + v} ] \\\\400 = F_o [\frac{340}{20 + 340} ] \\\\400 = F_o (0.9444) \\\\F_o = \frac{400}{0.9444} \\\\F_o = 423.55 \ Hz \\](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7Bv%7D%7Bv_s%20%2B%20v%7D%20%5D%20%5C%5C%5C%5C400%20%3D%20F_o%20%5B%5Cfrac%7B340%7D%7B20%20%2B%20340%7D%20%5D%20%5C%5C%5C%5C400%20%3D%20F_o%20%280.9444%29%20%5C%5C%5C%5CF_o%20%3D%20%5Cfrac%7B400%7D%7B0.9444%7D%20%5C%5C%5C%5CF_o%20%3D%20423.55%20%5C%20Hz%20%5C%5C)
F₀ ≅ 424 Hz.
Therefore, the observed frequency by the pedestrian is 424 Hz.
Answer:
2.47 m
Explanation:
Let's calculate first the time it takes for the ball to cover the horizontal distance that separates the starting point from the crossbar of d = 52 m.
The horizontal velocity of the ball is constant:

and the time taken to cover the horizontal distance d is

So this is the time the ball takes to reach the horizontal position of the crossbar.
The vertical position of the ball at time t is given by

where
is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
And substituting t = 2.56 s, we find the vertical position of the ball when it is above the crossbar:

The height of the crossbar is h = 3.05 m, so the ball passes

above the crossbar.