the area bounded by the line and the axes of a velocity-time graph is equal to the displacement of an object during that particular time period
Thank you
Answer:
<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>
The ball rotates 6.78 revolutions.
Explanation:
<u>Searching in google I found the total mass and the radius of the ball (m = 1.5 kg and r = 10 cm) which are needed to solve the problem!</u>
At the bottom the ball has the following angular speed:

Now, we need to find the distance traveled by the ball (L) by using θ=28° and h(height) = 2 m:
To find the revolutions we need the time, which can be found using the following equation:
(1)
So first, we need to find the acceleration:
(2)
By entering equation (2) into (1) we have:

Since it starts from rest (v₀ = 0):

Finally, we can find the revolutions:

Therefore, the ball rotates 6.78 revolutions.
I hope it helps you!
True, scientists often talk to each other to figure out if their results were similar and what they could have done better.
Although, talking to other scientists does have risks, other scientists could copy your work and further better it.
So, your final answer is TRUE, sorry for the long answer, I needed to have a word count about 20 characters and then I got carried away! lol
Answer: a) io=233.28 A ( initial current); b) τ=R*C= 22.31 ms; c) 81.7 ms
Explanation: In order to explain this problem we have to use, the formule for the variation of the current in a RC circuit:
I(t)=io*Exp(-t/τ)
and also we consider that io=V/R=(1.5/6.43*10^3)
=233.28 A
then the time constant for the RC circuit is τ=R*C=6.43*10^3*3.47*10^-6
=22.31 ms
Finally the time to reduce the current to 2.57% of its initial value is obtained from:
I(t)=io*Exp(-t/τ) for I(t)/io=0.0257=Exp(-t/τ) then
ln(0.0257)*τ =-t
t=-ln(0.0257)*τ=81.68 ms