Answer:
a) 
Explanation:
a) Let assume that the ground is not inclined, since the bottom of the playground slide is tangent to ground. Then, the length of given by the definition of a circular arc:



The bottom of the slide has a height of zero. The physical phenomenon around Dr. Ritchey's daughter is modelled after Principle of Energy Conservation. The child begins at rest:


The average frictional force is cleared within the expression:

![f = \frac{(12\,kg)\cdot [(9.807\,\frac{m}{s^{2}} )\cdot (3\,m)-\frac{1}{2}\cdot (4.5\,\frac{m}{s} )^{2} ]}{6.676\,m}](https://tex.z-dn.net/?f=f%20%3D%20%5Cfrac%7B%2812%5C%2Ckg%29%5Ccdot%20%5B%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%29%5Ccdot%20%283%5C%2Cm%29-%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%284.5%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%20%5D%7D%7B6.676%5C%2Cm%7D)

Answer:
6 month interval
Explanation:
The distance to a nearby star in theory is more simple than
one might think! First we must learn about the parallax effect. This is the mechanism our eyes use to perceive things at a distance! When we look at the star from the earth we see it at different angles throughout the earth's movement around the sun similar to how we see when we cover on eye at a time. Modern telescopes and technology can help calculate the angle of the star to the earth with just two measurements (attached photo!) Since we know the distance of the earth from the sun we can use a simple trigonometric function to calculate the distance to the star. The two measurements needed to calculate the angle of the star to the earth caused by parallax (in short angle θ) are shown in the second attached photo.
So using a simple trigonometric function
we can solve for d which is the distance of the earth to the star:

In the first attached photo a picture where r is the distance to the star and the base of the triangle is the diameter of the earth.
Answer:
29.2 ft/s
Explanation:
The distance of the light's projection on the wall
y = 13 tan θ
where θ is the light's angle from perpendicular to the wall.
The light completes one rotation every 3 seconds, that is, 2π in 3 seconds,
Angular speed = w = (2π/3)
w = (θ/t)
θ = wt = (2πt/3)
(dθ/dt) = (2π/3)
y = 13 tan θ
(dy/dt) = 13 sec² θ (dθ/dt)
(dy/dt) = 13 sec² θ (2π/3)
(dy/dt) = (26π/3) sec² θ
when θ = 15°
(dy/dt) = (26π/3) sec² (15°)
(dy/dt) = 29.2 ft/s
Speed is the rate of distance traveled per unit of time without regards to direction.
<u>Explanation</u>:
Speed is the pace of separation traveled per unit of time, regardless of direction.
Speed is straightforwardly relative to separate when time is consistent and conversely corresponding to a time when separation is steady. Multiplying one's speed would mean multiplying one's separation went in a given measure of time. Multiplying one's speed would likewise mean splitting the time required to travel a given separation.
The momentum of block B afterwards is
.
Explanation:
We can solve this problem by applying the principle of conservation of momentum.
In fact, the total momentum before and after the collision must be conserved. Therefore, we can write:

where:
is the initial momentum of block A
is the initial momentum of block B
is the final momentum of block A
is the final momentum of block B
Solving for
, we find:

So, the momentum of block B afterwards is
.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly