Answer:
5.66 × 10⁻²³ m/s
Explanation:
If i assume i can jump as high as h = 2 m, my initial velocity is gotten from v² = u² + 2gh. Since my final velocity v = 0, u = √2gh = √(2 × 9.8 × 2) = √39.2 m/s = 6.26 m/s.
Since initial momentum = final momentum,
mv₁ + MV₁ = mv₂ + MV₂ where m, M, v₁, V₁, v₂ and V₂ are my mass, mass of earth, my initial velocity, earth's initial velocity, my final velocity and earth's final velocity respectively.
My mass m = 54 kg, M = 5.972 × 10²⁴ kg, v₁ = 6.26 m/s, V₁ = 0, v₂ = 0 and V₂ = ?
So mv₁ + M × 0 = m × 0 + MV₂
mv₁ = MV₂
V₂ = mv₁/M = 54kg × 6.26 m/s/5.972 × 10²⁴ kg = 338.093/5.972 × 10²⁴ = 56.61 × 10⁻²⁴ m/s = 5.661 × 10⁻²³ m/s ≅ 5.66 × 10⁻²³ m/s
Answer:1.04 N
Explanation:
Given
Gravitational Force on the Platter is 
Tray makes an angle of 
This gravitational Force has components along and Perpendicular to Platter
Perpendicular Force 

Along the Tray


Thus 1.04 N is the magnitude of force that will cause Platter to slide down
Answer:
The weight of measuring stick is 9.8 N
Explanation:
given information:
the mass of the rock,
= 1 kg
measuring stick, x =1 m
d = 0.25 m
to find the weight of measuring stick, we can use the following equation:
τ = Fd
τ = 0
-
= 0
F_{r} = the force of the rock
F_{s} = the force of measuring stick

= m g
= 1 kg x 9.8 m/s
= 9.8 N
thus, the weight of measuring stick is 9.8 N
Answer:
a=F/m
a=12N/3kg (here newton can be written as kgm/s^2 so kg will be cancelled)
a=4m/s^2
Explanation:
The answer is B. darker; cooler
the dark spots give off less energy then the rest of the sun.
Hope this helps