<span> the speed of sound in air is directly proportional to the temperature of the air. The speed of sound depends on the temperature of the surrounding air, this can be represented by a speed of sound in air formula: v = 331m/s + 0.6m/s/C * T (where T is temperature)</span>
An unbalanced force is required to accelerate an object according to Newton's Second Law of Motion.
<h3>
What does Newton's Second Law of Motion state?</h3>
It states that the force applied to the object is equal to the product of mass and acceleration.

- An object will accelerate when the net force applied on the object is more than zero or unbalanced.
- The acceleration is the change in the direction or speed of the object. To achieve acceleration the force must be greater in a direction.
- When force is greater in one the object move in that direction which is known as acceleration.
Therefore, an unbalanced force is required to accelerate an object according to Newton's Second Law of Motion.
Learn more about Newton's Second Law of Motion.:
brainly.com/question/25810165
Answer:
The magnitude of the net force is √2F.
Explanation:
Since the two particles have the same charge Q, they exert the same force on the test charge; both attractive or repulsive. So, the angle between the two forces is 90° in any case. Now, as we know the magnitude of these forces and that they form a 90° angle, we can use the Pythagorean Theorem to calculate the magnitude of the resultant net force:

Then, it means that the net force acting on the test charge has a magnitude of √2F.
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as

Here,
=frequency received by detector
=frequency of wave emitted by source
=velocity of detector
=velocity of source
v=velocity of sound wave
Replacing we have that,


Therefore the frequencty that will hear the passengers is 422Hz