Answer:
Part A
Kp = 3.4 x 10⁴
Part B
Kp = 2.4 x 10⁻¹⁴
Part C
Kp = 1.2 x 10⁹
Explanation:
2PH₃(g) + As₂(g) ⇌ 2 AsH₃(g) + P₂(g) Kp = 2.9 x 10⁻⁵
Kp = [AsH₃]²[P₂]/[PH₃]²[As] = 2.9 x 10⁻⁵
Part A
it is the inverse of the equilibrium given
Kp(A) = 1/ Kp = 1 / 2.9 x 10⁻⁵ = 3.4 x 10⁴
Part B
Is the equilibrium where the coefficients have been multiplied by 3,
Kp(B) = ( Kp )³ = ( 2.9 x 10⁻⁵ )³ = 2.4 x 10⁻¹⁴
Part C
This is the reverse equilibrium multipled by 2.
Kp(C) = ( 1/Kp)² = ( 1/ 2.9 x 10⁻⁵ )² = 1.2 x 10⁹
Explanation:
A low-pressure area, or "low", is a region where the atmospheric pressure at sea level is below that of surrounding locations. Low-pressure systems form under areas of wind divergence that occur in upper levels of the troposphere.
Answer:
A. ΔG° = 132.5 kJ
B. ΔG° = 13.69 kJ
C. ΔG° = -58.59 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
We can calculate the standard enthalpy of the reaction (ΔH°) using the following expression.
ΔH° = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpy of formation
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)) - 1 mol × ΔH°f(CaCO₃(s))
ΔH° = 1 mol × (-635.1 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1206.9 kJ/mol)
ΔH° = 178.3 kJ
We can calculate the standard entropy of the reaction (ΔS°) using the following expression.
ΔS° = ∑np . S°p - ∑nr . S°r
where,
S: standard entropy
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)) - 1 mol × S°(CaCO₃(s))
ΔS° = 1 mol × (39.75 J/K.mol) + 1 mol × (213.74 J/K.mol) - 1 mol × (92.9 J/K.mol)
ΔS° = 160.6 J/K. = 0.1606 kJ/K.
We can calculate the standard Gibbs free energy of the reaction (ΔG°) using the following expression.
ΔG° = ΔH° - T.ΔS°
where,
T: absolute temperature
<h3>A. 285 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 285K × 0.1606 kJ/K = 132.5 kJ
<h3>B. 1025 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1025K × 0.1606 kJ/K = 13.69 kJ
<h3>C. 1475 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1475K × 0.1606 kJ/K = -58.59 kJ
Answer:
d hope this helps u hhwjs GD jehehj