Answer:
False
Explanation:
This is due to the gravitational pull, since the moon does not have the same force or gravity like Earth, your weight would change.
☆anvipatel77☆
•Expert•
Brainly Community Contributor
Answer:
a) T = 1,467 s
, b) A = 0.495 m
, c) v = 4.97 10⁻² m / s
Explanation:
The simple harmonic movement is described by the expression
x = A cos (wt + Ф)
Where the angular velocity is
w = √ k / m
a) Ask the period
Angular velocity, frequency and period are related
w = 2π f = 2π / T
T = 2π / w
T = 2pi √ m / k
T = 2π √ (1.2 / 22)
T = 1,467 s
f = 1 / T
f = 0.68 Hz
b) ask the amplitude
The mechanical energy of a harmonic oscillator
E = ½ k A²
A = √2 E / k
A = √ (2 2.7 / 22)
A = 0.495 m
c) the mass changes to 8.0 kg
As released from rest Ф = 0, the equation remains
x = A cos wt
w = √ (22/8)
w = 1,658
x = 3.0 cos (1,658 t)
Speed is
v = dx / dt
v = -A w sin wt
The speed is maximum when without wt = ±1
v = Aw
v = 0.03 1,658
v = 4.97 10⁻² m / s
Explanation:
It is known that wave intensity is the power to area ratio.
Mathematically, I = 
As it is given that power is 28.0 W and area is
.
Therefore, sound intensity will be calculated as follows.
I = 
= 
= 
or, = 
Thus, we can conclude that sound intensity at the position of the microphone is
.
<span>Assume: neglect of the collar dimensions.
Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa
τ=(S*Q)/(I*b)=(40*〖10〗^3*π(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(π/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa
@ Point K:
Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa
Using Mohr Circle:
Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 )
Ď_max=104.2 MPa, Ď„_max=45.62 MPa</span>