Answer: 5.30m
Explanation:
depth of pool = 3.2 m
i = 67.75°
Using snell's law, we have,
n₁ × sin(i) = n₂ × 2 × sin(r)
n₁ = 1, n₂ =1.33, r= 44.09°
Hence,
Distance of Google from edge if pool is:
2.2 + d×tan(r) = 2.2 + (3.2 × tan(44.09°) =5.30m
Convection is the movement<span> of groups of molecules within </span>fluids<span> such as gases and liquids, including molten rock (rheid).</span>
Answer:



Explanation:
g = Acceleration due to gravity = 
= Angle of slope = 
v = Velocity of child at the bottom of the slide
= Coefficient of kinetic friction
= Coefficient of static friction
h = Height of slope = 1.8 m
The energy balance of the system is given by

The speed of the child at the bottom of the slide is 
Length of the slide is given by


The force energy balance of the system is given by

The coefficient of kinetic friction is
.
For static friction

So, the minimum possible value for the coefficient of static friction is
.
The answer is; Irregular.