Answer:
Yes the ramp can be safely used
Explanation:
Here, we have
Length of longest ramp = 5 ft
Height of wall = 2 ft
Therefore, the sine of the angle adjacent to the ramp which is equal to the angle of elevation is given by;

Where:
The opposite side to angle = 2 ft wall and
Hypotenuse side = Ramp = 5 ft
Therefore,
and θ = sin⁻¹0.4 = 23.55 °
The ramp can be safely used as the angle it is adjacent to is less than the specified 30°.
Sprry o cant see the words clearly
Answer:
167.354 m
Explanation:
We are given;
The mass of the car with bad shock;
m = 1500 kg
The distance at which the car sinks; x =
6 cm = 6 × 10^(−2) m
The total mass of 4 people; m_t = 11 kg
The total speed in the highway; V = 65
mph = 29.058 m/s
The spring's constant can be calculated from the formula;
F = Kx
F is also equal to mg.
Thus;
m_t × g = Kx
K = (m_t × g)/x
K = (11 × 9.81)/(6 × 10^(−2))
K = 1798.5 N/m
Mass of car and four people;m_(c+t) = 1500 + 11 = 1511 kg
Thus, the period cam be calculated from the formula;
T = 2π√((m_c+t)/k)
T = 2π√(1511/1798.5)
T = 5.759 s
the distance between adjacent bumps is calculated from;
Velocity = distance/time
Distance = velocity x time
Distance = 29.058 × 5.759
Distance = 167.354 m
Answer:
Explanation:
Let T be the tension in the cord.
Impulse by cord = change in momentum of block A .
T x 5s = 10 ( 2 -0) = 20
T = 4 poundal .
acceleration of block B = 2 / 5 = 0.4 m /s²
Net force applied on A = m ( g + a ) where m is mass of block B , a is acceleration of block B .
= 8 ( 32 + .4 ) = 259.2 poundal
Frictional force on block A = 259.2 - 4 = 255.2 poundal
μ x 10 x 32 = 255.2
320μ = 255.2
μ =0 .8 .