Answer:

Explanation:
If the weight is a linear function of the amount of fuel, the following correlation is fulfilled :

we solve the equation:

Answer:
spring compressed is 0.724 m
Explanation:
given data
mass = 1.80 kg
spring constant k = 2 × 10² N/m
initial height = 2.25 m
solution
we know from conservation of energy is
mg(h+x) = 0.5 × k × x² ...................1
here x is compression in spring
so put here value in equation 1 we get
1.8 × 9.8 × (2.25+x) = 0.5 × 2× 10² × x²
solve it we get
x = 0.724344
so spring compressed is 0.724 m
Answer:
answer is option 4
Explanation:
you have to use option 4 because u need to find out initial velocity (Vi)
Answer:
2.667m/s to the north and 3.333 m/s to the west
Explanation:
According to law of momentum conservation, the total momentum should be conserved before and after the explosion.
Before the explosion, the momentum was
0.5*2 = 1 kg m/s to the west
Therefore the total momentum after the explosion should be the same horizontally and vertically.
Vertically speaking, it was 0 before the explosion. After the explosion:
0.2*4 + 0.3v = 0
0.3v = -0.8
v = -0.8/0.3 = -2.667 m/s
So the vertical component of the 0.3kg piece is 2.667m/s to the north
Horizontally speaking, since the 0.2kg-piece doesn't move west or east post-explosion:
0.2*0 + 0.3V = 1
0.3V = 1
V = 1/0.3 = 3.333 m/s
So the horizontal component of the 0.3kg piece is 3.333 m/s to the west