Answer:
2.676e22 atoms of Hydrogen
Explanation:
Knowing the density of water is 1g/ml, 1(g/ml)*0.4ml=0.4 grams of H2O. Knowing that there are 16 grams of H2O in 1 mole of H2O, we can set up a unit conversion of 0.4 Grams H2O *
=
2.676e22 atoms of Hydrogen.
Answer:
Biodiesel has a higher oxygen content (usually 10 to 12 percent) than petroleum diesel. ... Biodiesel is more chemically active as a solvent than petroleum diesel. As a result, it can be more aggressive to some materials that are normally considered safe for diesel fuel. Biodiesel is much less toxic than petroleum diesel.
<h3><u>Answer;</u></h3>
3p34s23d7
<h3><u>Explanation</u>;</h3>
- Electrons in an atom are contained in specific energy levels that are different distances from the nucleus.
- Within each energy level is a volume of space where specific electrons are likely to be located, called orbitals. Orbitals are of different shapes, denoted by a letter (s, p, d, f, g).
- S-orbital takes a maximum of two electrons, p-orbital take a maximum of six electrons, d-orbital takes a maximum of 10 electrons, and so fourth.
- The electron filling pattern takes; 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p.........
- Therefore; in this case after 3p3, we then go to 4s, with 2 electrons, then 3d which takes 7 electrons.
Answer:
i is the correct answer.
Explanation:
the RAM of aluminum is indeed 27. And since the RAM of substances are measured in terms of the C-12 isotope then R indeed explains why the RAM Al is 27.
The full question asks to decide whether the gas was a specific gas. That part is missing in your question. You need to decide whether the gas in the flask is pure helium.
To decide it you can find the molar mass of the gas in the flask, using the ideal gas equation pV = nRT, and then compare with the molar mass of the He.
From pV = nRT you can find n, after that using the mass of gass in the flask you use MM = mass/moles.
1) From pV = nRT, n = pV / RT
Data:
V = 118 ml = 0.118 liter
R = 0.082 atm*liter/mol*K
p = 768 torr * 1 atm / 760 torr = 1.0105 atm
T = 35 + 273.15 = 308.15 K
n = 1.015 atm * 0.118 liter / [ 0.082 atm*liter/K*mol * 308.15K] =0.00472 mol
mass of gas = mass of the fask with the gas - mass of the flasl evacuated = 97.171 g - 97.129 g = 0.042
=> MM = mass/n = 0.042 / 0.00472 = 8.90 g/mol
Now from a periodic table or a table you get that the molar mass of He is 4g/mol
So the numbers say that this gas is not pure helium , because its molar mass is more than double of the molar mass of helium gas.