1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
10

When was World War 3 Started?

Physics
2 answers:
trasher [3.6K]3 years ago
5 0

Answer:

Korean War: 25 June 1950 – 27 July 1953

Many then believed that the conflict was likely to soon escalate into a full-scale war between the three countries, the US, the USSR, and China. CBS war correspondent Bill Downs wrote in 1951 that, "To my mind, the answer is: Yes, Korea is the beginning of World War III.

Explanation:

IRINA_888 [86]3 years ago
4 0

Answer:

1950-1953

Explanation:

You might be interested in
A tug-of-war game is played by five c/hildren: three on one team and two on the other. How much force will the two child team ha
dem82 [27]

Answer:

no, 3 porces is more tha 2 so the power between the 3 should be more than 2

Explanation:

4 0
3 years ago
Two thin concentric spherical shells of radii r1 and r2 (r1 < r2) contain uniform surface charge densities V1 and V2, respect
Lyrx [107]

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.

So,

a)  0 < r < r1 :

We know that the Electric field inside the thin hollow shell is zero, if there is no charge inside it.

Hence, E = 0 for r < r1

b)  r1 < r < r2:

Electric field =?

Let, us consider the Gaussian Surface,

E x 4 \pi r^{2}  = \frac{Q1}{E_{0} }

So,

Rearranging the above equation to get Electric field, we will get:

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   }

Multiply and divide by r1^{2}

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } x \frac{r1^{2} }{r1^{2} }

Rearranging the above equation, we will get Electric Field for r1 < r < r2:

E= (σ1 x r1^{2}) /(E_{0} x r^{2})

c) r > r2 :

Electric Field = ?

E x 4 \pi r^{2}  = \frac{Q1 + Q2}{E_{0} }

Rearranging the above equation for E:

E = \frac{Q1+Q2}{E_{0} . 4 \pi. r^{2}   }

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } + \frac{Q2}{E_{0} . 4 \pi. r^{2}   }

As we know from above, that:

\frac{Q1}{E_{0} . 4 \pi. r^{2}   } =  (σ1 x r1^{2}) /(E_{0} x r^{2})

Then, Similarly,

\frac{Q2}{E_{0} . 4 \pi. r^{2}   } = (σ2 x r2^{2}) /(E_{0} x r^{2})

So,

E = \frac{Q1}{E_{0} . 4 \pi. r^{2}   } + \frac{Q2}{E_{0} . 4 \pi. r^{2}   }

Replacing the above equations to get E:

E = (σ1 x r1^{2}) /(E_{0} x r^{2}) + (σ2 x r2^{2}) /(E_{0} x r^{2})

Now, for

d) Under what conditions,  E = 0, for r > r2?

For r > r2, E =0 if

σ1 x r1^{2} = - σ2 x r2^{2}

4 0
3 years ago
If two planets are close enough to each other do they have a greater gravitational pull then two planets that are farther away?
guapka [62]
Yes because if they are further away it makes it hard for them to attract each other
7 0
3 years ago
Read 2 more answers
. A mass m is traveling at an initial speed of 25.0 m/s. It is brought to rest in a distance of 62.5 m by a net force of 15.0 N.
harkovskaia [24]

Answer:

m = 3 kg

The mass m is 3 kg

Explanation:

From the equations of motion;

s = 0.5(u+v)t

Making t thr subject of formula;

t = 2s/(u+v)

t = time taken

s = distance travelled during deceleration = 62.5 m

u = initial speed = 25 m/s

v = final velocity = 0

Substituting the given values;

t = (2×62.5)/(25+0)

t = 5

Since, t = 5 the acceleration during this period is;

acceleration a = ∆v/t = (v-u)/t

a = (25)/5

a = 5 m/s^2

Force F = mass × acceleration

F = ma

Making m the subject of formula;

m = F/a

net force F = 15.0N

Substituting the values

m = 15/5

m = 3 kg

The mass m is 3 kg

7 0
3 years ago
An old millstone, used for grinding grain in a gristmill, is a solid cylindrical wheel that can rotate about its central axle wi
MAXImum [283]

Answer:

The answer is I=70,513kgm^2

Explanation:

Here we will use the rotational mechanics equation T=Ia, where T is the Torque, I is the Moment of Inertia and a is the angular acceleration.

When we speak about Torque it´s basically a Tangencial Force applied over a cylindrical or circular edge. It causes a rotation. In this case, we will have that T=Ft*r, where Ft is the Tangencial Forge and r is the radius

Now we will find the Moment of Inertia this way:

Ft*r=I*a -> (Ft*r)/(a) = I

Replacing we get that I is:

I=(200N*0,33m)/(0,936rad/s^2)

Then I=70,513kgm^2

In case you need to find extra information, keep in mind the Moment of Inertia for a solid cylindrical wheel is:  

I=(1/2)*(m*r^2)

4 0
3 years ago
Other questions:
  • Why does water stay in a straw if you put your finger over it?
    15·1 answer
  • Which of the following are disadvantages of solar energy?
    5·2 answers
  • Ellen needs to move a heavy box across the floor and then place it on a shelf that is four feet above the floor. Which use of ma
    8·2 answers
  • Which of the following shows a car holding a steady speed
    9·2 answers
  • Use the data provided to calculate the gravitational potential energy of each cylinder mass. Round your answers to the nearest t
    9·2 answers
  • What is the mass of an object that accelerates at 5 m/s2 when pushed with 100 N?
    14·1 answer
  • What do you think a force diagram might look like for a hit that causes a concussion? Draw a diagram. Consider only the person’s
    6·1 answer
  • Help me plzzzzz<br> Will give Brainlyest
    11·1 answer
  • Explain why the temperature is not changing at X
    13·1 answer
  • Find the mass of a 165 N child
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!