To make any substance solid, molecules must come very close to each other. Substances with weak intermolecular forces have weak bonding. Hence to make their molecules come close to each other, we must provide low temperature.
Answer:
they're close to filling their outer shell, fulfilling the octet rule
Explanation:
Answer:
An acid is a substance that donates protons (in the Brønsted-Lowry definition) or accepts a pair of valence electrons to form a bond (in the Lewis definition). A base is a substance that can accept protons or donate a pair of valence electrons to form a bond. Bases can be thought of as the chemical opposite of acids.
Answer:
3.00 mol
Explanation:
Given data:
Mass of P₄ = 211 g
Mass of oxygen = 240 g
Moles of P₂O₅ = ?
Solution:
Chemical equation:
P₄ + 5O₂ → 2P₂O₅
Number of moles of P₄:
Number of moles = mass/ molar mass
Number of moles = 211 g / 123.88 g/mol
Number of moles = 1.7 mol
Number of moles of O₂ :
Number of moles = mass/ molar mass
Number of moles = 240 g / 32g/mol
Number of moles = 7.5 mol
Now we will compare the moles of product with reactant.
O₂ : P₂O₅
5 : 2
7.5 : 2/5×7.5 = 3.00
P₄ : P₂O₅
1 : 2
1.7 : 2×1.7 = 3.4 mol
Oxygen is limiting reactant so the number of moles of P₂O₅ are 3.00 mol.
Mass of P₂O₅:
Mass = number of moles × molar mass
Mass = 3 mol ×283.9 g/mol
Mass = 852 g
Answer: A pattern of same atomic orbitals can be seen about elements in the same period with respect to electron structures.
Explanation:
The horizontal rows in a period table are called periods.
Elements present in the same period will have same atomic orbitals.
For example, electronic distribution of Na is 2, 8, 1 and it is a third period element.
Similarly, electronic distribution of Cl is 2, 8, 7 and it is also a third period element.
Hence, both Na and Cl will have K, L, M shells, that is, they have three atomic orbitals.
Thus, we can conclude that a pattern of same atomic orbitals can be seen about elements in the same period with respect to electron structures.