Answer:
In order to initiate most fission reactions, an atom is bombarded by a neutron to produce an unstable isotope, which undergoes fission. When neutrons are released during the fission process, they can initiate a chain reaction of continuous fission which sustains itself.
It should be 0.25 M. Use the formula C1*V1=C2*V2, for those values, as it is right when it changed colour. Remember to change the if those are not the same (but in your case it is, so no need this time).
C1*V1=C2*V2
C1*27ml=0.55M*12.5ml
C1=(0.55M*12.5ml)/27ml = 0.25M
The quantity of heat absorbed is 33.4 kJ.
Δ<em>H</em>_fus = 334 J·g⁻¹
<em>q = m</em>Δ<em>H</em>_fus = 100.0 g × 334 J·g⁻¹ = 3.34 × 10⁴ J = 33.4 kJ
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium shifts to counteract the change to reestablish equilibrium. If a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. This page covers changes to the position of equilibrium due to such changes and discusses briefly why catalysts have no effect on the equilibrium position.
For example, if the system is changed in a way that increases the concentration of one of the reacting species, it must favor the reaction in which that species is consumed. In other words, if there is an increase in products, the reaction quotient, Qc, is increased, making it greater than the equilibrium constant, Kc.
Just need some point sorry