It's one for ideal gases . by the way , remember that it's molar volume not volume itself and, this ratio is shown by Z and is called<span> Compressibility </span> factor.
Chemical energy is the energy stored in atoms that deal with the strictures etc. What determines this is the <span>thermodynamic.</span>
Answer:
What will happen to Uk if you double the mass?
Explanation:
Uk = 0.5 * m * v²
You see that both m and v are variable, which means that both m and v can be any number. Regardless of the numbers you put in for m or v, the formula to calculate the kinetic energy (Uk) remains valid.
You could ask
1. What will happen to Uk if you double the mass?
2. What will happen to Uk if you double the velocity?
please see and understand(!) that the relationship between Uk an v² is indeed the velocity squared....
EXTRA
Uk = 0.5 * m * (v)²
Suppose the m = 3kg and velocity = 5 m/s
What is the Uk?
Well if you know the formula you can use your calculator to find out:
Uk = 0.5 * m * (v)²
Uk = 0.5 * 3 * (5)²
Uk = 0.5 * 3 * 25
Uk = 37.5 kgm/s²
Again you ask what will happen to Uk if you double the velocity?
At first it was 5 m/s and now it doubles, which means it now has that value *2
The new velocity is 5 *2 = 10 m/s
Uk = 0.5 * m * (v)²
Uk = 0.5 * 3 * (10)²
Uk = 0.5 * 3 * 100
Uk = 150 kgm/s²
150 = 4 * 37.5
So now you see that if you double your velocity, the Uk will be 2² = 4 times as big !
Answer:
P2=0.385atm
Explanation:
step one:
Given that the temperature T1= 60 Celcius
we can convert this to kelvin by adding 273k to 60 Celcius
we have T1= 333k
pressure P1= 0.470 atm
step two:
we know that the standard temperature is T2= 273K
Applying the temperature and pressure relationship we have
P1/T1=P2/T2
substituting our given data we have
0.47/333=P2/273
cross multiply we have
P2= (0.47*273)/333
P2= 128.31/333
P2=0.385 atm