Answer:
210
Explanation:
A ball rolls horizontally off the cliff at a speed of 30 m/s. It takes 7 seconds for the ball to hit the ground. What is the height of the cliff and the horizontal distance traveled by the ball?
S = (1/2)*9.8 m/s^2 * 7^2 = 240.1 m if the ball is very dense so air resistance, and therefore terminal velocity, can be ignored.
S = v * t = 30 m/s * 7 s = 210 m for the horizontal distance, again assuming negligible air resistance.
Answer:
Explanation:
solution is in the attachment below
The net force on the sledge is 31.64N.
Frictional force = µkR
= 0.269 x 42.2 x 9.81 = 111.36
net force = 143N - 111.36N
= 31.64N
refer brainly.com/question/24557767
#SPJ2
Answer:
τ=0.060 N.m
Explanation:
By kinematics:

Solving for α:

where ωo = 600*2*π/60; ωf = 0; t=10s

The sum of torque is:



Answer:
735 J
Explanation:
From the question given above, the following data were obtained:
Weight (W) = 49 N
Height (h) = 15 m
Potential energy =?
Potential energy is simply defined as the product of weight of the object and height to which the object is raised. Mathematically, it is expressed as:
Potential energy = weight × height
With the above formula, we can obtain the potential energy of the coconut as follow:
Weight (W) = 49 N
Height (h) = 15 m
Potential energy =?
Potential energy = weight × height
Potential energy = 49 × 15
Potential energy = 735 J
Thus, the potential energy of the coconut is 735 J