The overall reaction is:
Br₂(g) + 2 NO(g) ↔ 2 NOBr(g)
rate law = k [Br₂][NO]²
The first step of the overall reaction is:
NO(g) + Br₂(g) K₁⇄⇄K-1 NOBr₂(g)
rate law 1 = k₁ [Br₂][NO] or
rate law 2 = k-1 [NOBr₂]
The second step of the overall reaction is:
NOBr₂(g) + NO(g) →K₂→ 2 NOBr
rate law 3 = k₂[NOBr₂][NO]
So, rate law of overall reaction can be obtained as follows:
(rate law 1)*(rate law 3) / (rate law 2)
= [(k₁[Br₂][NO])* (K₂[NOBr₂][NO])] / k₋₁[NOBr₂]
= [k₁k₂/k₋₁][NO]²[Br₂]
So the correct answer is:
[k₁k₂/k₋₁][NO]² [Br₂]
Answer:
Calcite Calcium carbonate
Calgon Calcium hexametaphosphate
Calomel Mercurous chloride
Carbolic acid Phenol
Explanation:
⭐ sorry ⭐
The reaction between C2H2 and O2 is as follows:
2C2H2 + 5O2 = 4CO2 + 2H2O
After balancing the equation, the reaction ratio between C2H2 and O2 is 2:5.
The moles of O2 in this reaction is 84.0 mol. According to the above ratio, the moles of C2H2 needed to react completely with the O2 is 84.0mole *2/5 = 33.6 mole.
Answer:
Explanation:
1. Miles travelled in an average month

2. Using a gasoline powered vehicle
(a) Moles of heptane used
(b) Equation for combustion
C₇H₁₆ + O₂ ⟶ 7CO₂ + 8H₂O
(c) Moles of CO₂ formed
(d) Volume of CO₂ formed
At 20 °C and 1 atm, the molar volume of a gas is 24.0 L.
3. Using an electric vehicle
(a) Theoretical energy used

(b) Actual energy used
The power station is only 85 % efficient.

(c) Combustion of CH₄
CH₄ + 2O₂ ⟶ CO₂ +2 H₂O
(d) Equivalent volume of CO₂
The heat of combustion of methane is -802.3 kJ·mol⁻¹

4. Comparison

0.25 mols SO₂ x 64.058 g SO₂/ 1 mol SO₂ = 16.0145 g SO₂
molar mass of SO₂: 64.058 g
answer: 16 grams of SO₂ (2 sig figs)
check the question to see if its asked for a specific unit for mass (grams or kilograms, if they asked for kiligrams then convert 16 grams to kilograms by dividing it by 1000)