1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
3 years ago
10

A 1.0 kg piece of copper with a specific heat of cCu=390J/(kg⋅K) is placed in 1.0 kg of water with a specific heat of cw=4190J/(

kg⋅K). The copper and water are initially at different temperatures. After a sufficiently long time, the copper and water come to a final equilibrium temperature. Part A Which of the following statements is correct concerning the temperature changes of both substances? (Ignore the signs of the temperature changes in your answer.) Which of the following statements is correct concerning the temperature changes of both substances? (Ignore the signs of the temperature changes in your answer.) The temperature change of the copper is equal to the temperature change of the water. The temperature change of the water is greater than the temperature change of the copper. The temperature change of the copper is greater than the temperature change of the water.
Physics
1 answer:
Valentin [98]3 years ago
7 0

Answer:

The temperature change of the copper is greater than the temperature change of the water.

Explanation:

deltaQ = mc(deltaT)

Where,

delta T = change in the temperature

m =mass

c = heat capacity

\frac{(deltaT)_{Cu}}{(deltaT)_{w}}=\frac{4190J/kg.K}{390J/kg.K}\\ \\(deltaT)_{Cu}=10.74(deltaT)_{w}

The temperature change in the copper is nearly 11 times the temperature change in the water.

So, the correct option is,

The temperature change of the copper is greater than the temperature change of the water.

Hope this helps!

You might be interested in
Consider a wave along the length of a stretched slinky toy, where the distance between coils increases and decreases. What type
GrogVix [38]

Answer:

"Longitudinal wave" is the appropriate answer.

Explanation:

  • Generating waves whenever the form of communication being displaced in a similar direction as well as in the reverse way of the wave's designated points, could be determined as Longitudinal waves.
  • A wave running the length of something like a Slinky stuffed animal, which expands as well as reduces the spacing across spindles, produces a fine image or graphic.
3 0
2 years ago
Read 2 more answers
A force did 80 j of work on an object in 4 m how big was the force
yanalaym [24]

Work = (force) x (distance)

80 J = (force) x (4 m)

Force = (80 J) / (4 m)  =  20 N

That's IF the force was in the same direction as the 4m of motion.
If the force was kind of slanted, then it had to be stronger, and
it had a component of 20N in the direction of the motion.

3 0
3 years ago
A cheetah can accelerate from rest at the rate of 4m /s
lesya [120]
Acceleration of cheetah (a) = 4m/s²
time = 10s
initial velocity(u) = 0
final velocity = v
distance travelled = s

v = u +at = 0 + 10×4 = 40m/s
s = (v²-u²)/2a = 40²/(2×4) = 1600/8 = 200m
   
6 0
3 years ago
Two identical silver spheres of mass m and radius r are placed a distance R (sphere 1) and 2R (sphere 2) from the Sun, respectiv
lys-0071 [83]

Answer:

The ratio of T2 to T1 is 1.0

Explanation:

The gravitational force exerted on each sphere by the sun is inversely proporational to the square of the distance between the sun and each of the spheres.

Provided that the two spheres have the same radius r, the pressure of solar radiation too, is inversely proportional to the square of the distance of each sphere from the sun.

Let F₁ and F₂ = gravitational force of the sun on the first and second sphere respectively

P₁ and P₂ = Pressure of solar radiation on the first and second sphere respectively

M = mass of the Sun

m = mass of the spheres, equal masses.

For the first sphere that is distance R from the sun.

F₁ = (GmM/R²)

P₁ = (k/R²)

T₁ = (F₁/P₁) = (GmM/k)

For the second sphere that is at a distance 2R from the sun

F₂ = [GmM/(2R)²] = (GmM/4R²)

P₂ = [k/(2R)²] = (k/4R²)

T₂ = (F₂/P₂) = (GmM/k)

(T₁/T₂) = (GmM/k) ÷ (GmM/k) = 1.0

Hope this Helps!!!

3 0
3 years ago
Can a machine like a lever, produce a greater force than what you put into it? Can it increase the energy that you put into it?
morpeh [17]

Answer:

yes

Explanation:

the force is multiplied by the levers length of the handle

7 0
2 years ago
Read 2 more answers
Other questions:
  • True or False? An airplane is flying West at 200 kilometers per hour 2 hours later it is flying West at 300 km/h its average acc
    9·1 answer
  • What is responsible for the production of x ray emission at the cutoff wavelength?
    15·1 answer
  • Usually the hull of a ship contains a large volume of air. Why?
    6·1 answer
  • Somewhere in the vast flat tundra of planet Tehar, a projectile is launched from the ground at an angle of 60 degrees. It reache
    9·1 answer
  • A rubber ball and a lump of clay have equal mass. They are thrown with equal speed against a wall. The ball bounces back with ne
    14·1 answer
  • If your mass, the mass of Earth, and the mass of everything in the solar system were twice as much as it is now, yet everything
    6·1 answer
  • Why isn't earth overcrowded with animals
    9·1 answer
  • In a “minute to win it” game, cards are placed between cups to stack them. The contestant then pulls the card out in hopes that
    9·2 answers
  • A car acceleration uniformly from 5 m\s to 13m/s in 4.0s. What is the acceleration of the car
    10·1 answer
  • A man on the moon with a mass of 90 kilograms weighs 146 newtons. The radius of the moon is 1.74 x 10^6
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!