1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nezavi [6.7K]
4 years ago
9

Water in a tank is pressurized by air and pressure measured using a multi-fluid manometer. Determine the gage pressure of air in

the tank if h1 = 20 cm, h2 = 30 cm, h3 = 46 cm. Given r for water, oil and Hg to be 1000 kg/m3, 800 kg/m3, and 13, 600 kg/m3, respectively.
Physics
1 answer:
sattari [20]4 years ago
4 0

Answer:

The gauge pressure of air is 110 kpa

Explanation:

Atmospheric pressure, P_{atm} = 101 Kpa

P_{gauge} + \rho_w gh_1 + \rho_o gh_2 -\rho_{Hg} gh_3 =P_{atm}

P_{gauge}  = P_{atm} - \rho_w gh_1 - \rho_o gh_2 +\rho_{Hg} gh_3

where;

ρw is the density of water = 1000 kg/m³

ρo is the density of oil = 800 kg/m³

ρHg is the density of mercury = 13,600 kg/m³

g is acceleration due to gravity = 9.8 m/s²

P_{gauge}  = 101,000 - (1000* 9.8*0.2) - (800* 9.8*0.3) +(13,600* 9.8*0.46)\\\\P_{gauge}  = 101,000 - 1960 - 2352 + 13610.26\\\\P_{gauge}  = 110,298.26 pa

Therefore, the gauge pressure of air is 110 kpa

You might be interested in
N capacitors are connected in parallel to form a "capacitor circuit". The capacitance of first capacitor is C, second one is C/2
liberstina [14]

Answer:

2C

Explanation:

The equivalent capacitance of a parallel combination of capacitors is the sum of their capacitance.

So, if the capacitance of each capacitor is half the previous one, we have a geometric series with first term = C and rate = 0.5.

Using the formula for the sum of the infinite terms of a geometric series, we have:

Sum = First term / (1 - rate)

Sum = C / (1 - 0.5)

Sum = C / 0.5 = 2C

So the equivalent capacitance of this parallel connection is 2C.

5 0
3 years ago
Write down the (real) electric and magnetic fields for a monochromatic plane wave of amplitude E0 , frequency w, and phase angle
jeka57 [31]

Answer:

a) the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis

b) the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)

Explanation:

a) the polarization the determined wave oscillates the electric field, which is the z axis

 As the wave travels on the negative x-axis and the magnetic field is perpendicular, this field goes on the positive y-axis

the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis

be) in the case of a polarization in the xi plane the magnetic field must go in the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)

3 0
3 years ago
In the steady state 1.2 ✕ 1018 electrons per second enter bulb 1. There are 6.3 ✕ 1028 mobile electrons per cubic meter in tungs
bekas [8.4K]

Answer:

E=12.2V/m

Explanation:

To solve this problem we must address the concepts of drift velocity. A drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.

The equation is given by,

V=\frac{I}{nAq}

Where,

V= Drift Velocity

I= Flow of current

n= number of electrons

q = charge of electron

A = cross-section area.

For this problem we know that there is a rate of 1.8*10^{18} electrons per second, that is

\frac{I}{q} = 1.2*10^{18}

A= 1.3*10^{-8}m^2

n=6.3*10^{28} e/m^3

\omicron{O} = 1.2*10^{-4}(m/s)(N/c) Mobility

We can find the drift velocity replacing,

V = \frac{1.2*10^{18}}{(1.3*10^{-8})(6.3*10^{28})}

V= 1.465*10^-3m/s

The electric field is given by,

E= \frac{V}{\omicron{O}}

E=\frac{1.465*10^-3}{1.2*10^{-4}}

E=12.2V/m

7 0
3 years ago
The balance between incoming solar energy and out going energy radiated into space is called...
marin [14]
Based on the physics principle of conservation of energy, this radiation budget represents the accounting of the balance between incoming radiation, which is almost entirely solar radiation, and outgoing radiation, which is partly reflected solar radiation and partly radiation emitted from the Earth system, including the atmosphere.
5 0
3 years ago
Describe the different processes that lead to substantial internal heat sources for Jupiter and Saturn. Since these two objects
Softa [21]

Explanation:

The internal heat sources for Jupiter and Saturn derive from primordial heat resulting from the initial gravitational contraction of each planet. Jupiter also generates heat by slow contraction, which liberates substantial gravitational energy. A significant part of Saturn’s heat comes from the release of gravitational energy from helium separating from the lighter hydrogen and sinking to its core. What one considers to be a star is a matter of definition, as we discuss in more detail in the chapter on The Birth of Stars and the Discovery of Planets outside the Solar System. While both Jupiter and Saturn generate much of their energy internally, they are not large enough (by a significant factor) to support nuclear reactions in their interiors, and so are not considered to be stars.

6 0
4 years ago
Other questions:
  • How many electrons in Cu​
    10·1 answer
  • One of the main arguments that animal rights advocates present is that animals have rights because they __________.
    9·2 answers
  • As a laudably skeptical physics student, you want to test Coulomb's law. For this purpose, you set up a measurement in which a p
    12·1 answer
  • A car whose mass is 1000kg is traveling at a constant speed of 10 m/s2. Neglecting any friction, how much force will the engine
    5·1 answer
  • I need help with 3 question.
    5·1 answer
  • a motorcar is moving with a velocity of 108 km / h and it takes 4s to stop after the brakes are applied calculate the force exer
    5·2 answers
  • Honey bees can acquire a small net charge on the order of 1 pC as they fly through the air and interact with plants. Estimate th
    10·1 answer
  • A parallel-plate air capacitor with a capacitance of 260 pF has a charge of magnitude 0.155 μC on each plate. The plates have a
    13·1 answer
  • What tension must a 50.0 cm length of string support in order to whirl an attached 1,000.0 g stone in a circular path at 5.00 m/
    8·1 answer
  • What type of circuits have no electricity flowing through them? *
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!