<span>
A. The closet point in the Moon's orbit to Earth . . . . . perigee
B. The farthest point in the Moon's orbit to Earth . . . . . apogee
C. The Sun's orbit that is closest to the Moon . . . . . a meaningless description
D. The closest point in Earth's orbit of the Sun . . . . . perihelion
-- The farthest point in Earth's orbit of the Sun . . . . . aphelion
</span>
Answer:
v = 0.489 m/s
Explanation:
It is given that,
Mass of a box, m = 1.5 kg
The compression in the spring, x = 6.5 cm = 0.065 m
Let the spring constant of the spring is 85 N/m
We need to find the velocity of the box (v) when it hit the spring. It is based on the conservation of energy. The kinetic energy of spring before collision is equal to the spring energy after compression i.e.


So, the speed of the box is 0.489 m/s.
Answer:
The Answer is A
Explanation:
<h3>Mark me as <em><u>
Brainliest</u></em></h3>
<em>Pls </em>
<em>Thx </em>
<u><em>hope this helped</em></u>
Answer:
E) momentum and mechanical energy
Explanation:
In the context, an object is attached to the another mass with a spring which is initially at a rest position. Now when the spring is compressed, the two masses moves with the same speed. Now since the both the masses combines with the spring to move together they are considered as one system and in this case the momentum and the kinetic energy will be conserved.
The kinetic energy and momentum of the system after collision and the kinetic energy and momentum of the two masses before collision will be constant.