Answer:
1058.78 ft/sec
Explanation:
Horizontal Component of Velocity; This is the velocity of a body that act on the horizontal axis. I.e Velocity along x-axis
The horizontal velocity of a body can be calculated as shown below.\
Vh = Vcos∅.......................... Equation 1
Where Vh = horizontal component of the velocity, V = The velocity acting between the horizontal and the vertical axis, ∅ = Angle the velocity make with the horizontal.
Given: V = 1178 ft/sec, ∅ = 26°
Substitute into equation 1
Vh = 1178cos26
Vh = 1178(0.8988)
Vh = 1058.78 ft/sec
Hence the horizontal component of the velocity = 1058.78 ft/sec
A mechanical wave<span> is a </span>wave<span> that is an oscillation of </span>matter<span>, and therefore transfers energy through a </span>medium.[1]<span> While waves can move over long distances, the movement of the </span>medium of transmission<span>—the material—is limited. Therefore, oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave. Any kind of wave (mechanical or electromagnetic) has a certain energy. Mechanical waves can be produced only in media which possess elasticity and inertia.</span>
K.E = 1/2*m*v^2 = 1/2(500)(3)^2 = 2250 J
m*g*h = 500(9.8)(30) = 147000 J
2250 + 147000 = 149250
When drinking at a private event, you should assume that drinks will be STRONGER THAN NORMAL.
At private events, some hosts have the habit of mixing different drinks together in order to increase the intoxicating power of the drinks. This does not normally happen when one is buying from restaurants or other commercial places. Thus, to be on the safe side, one should always assume that drinks will be stronger when one is attending a private event, this will caution one to drink responsibly in order to avoid intoxication.