To solve this problem we will apply the principle of buoyancy of Archimedes and the relationship given between density, mass and volume.
By balancing forces, the force of the weight must be counteracted by the buoyancy force, therefore




Here,
m = mass
g =Gravitational energy
The buoyancy force corresponds to that exerted by water, while the mass given there is that of the object, therefore

Remember the expression for which you can determine the relationship between mass, volume and density, in which

In this case the density would be that of the object, replacing

Since the displaced volume of water is 0.429 we will have to


The density of water under normal conditions is
, so


The density of the object is 
Answer:
169.74 N
Explanation:
Given,
Mass of the girl = 30 Kg
angle of the rope with vertical, θ = 30°
equating the vertical component of the tension
vertical component of the tension is equal to the weight of the girl.
T cos θ = m g
T cos 30° = 30 x 9.8
T = 339.48 N
Tension on the two ropes is equal to 339.48 N
Tension in each of the rope = T/2
= 339.48/2 = 169.74 N
Hence, the tension in each of the rope is equal to 169.74 N
Answer:
Lol, you should do Nate, Bobby, Cindy, Joe, and Beth
Jk, if you want to be series and probably not fail go for these:
If it wants types of small/average stars, then go with
Small star names:
OGLE-TR-122B
Gliese 229 B
TRAPPIST-1
Teegarden's Star
Luyten 726-8 (A and B)
Proxima Centauri
Wolf 359 111400
Ross 248
Barnard's Star
CM Draconis B
Ross 154 167000
CM Draconis A
Kapteyn's Star