Answer:
Final vertical velocity = -29m/s
Horizontal distance = 100m
Height = 20.41m
Explanation:
1. The vertical final velocity can be calculated thus: vy = vyo - gt
Where;
vy = vertical velocity (m/s)
vyo = vertical initial velocity (20m/s)
g = acceleration due to gravity (9.8m/s²)
t = time (5s)
Hence, vy = vyo - gt
vy = 20 - (9.8 × 5)
vy = 20 - 49
vy = -29m/s
2. x = V0 x t
Where;
x = horizontal distance (m)
Vo = initial velocity
t = time (s)
x = 20 × 5
x = 100m
3. Maximum height = (voy)²/2g
= 20²/ 2 × 9.8
= 400/19.6
= 20.41m
Radiant heat transfer is proportional to the 4-th power of absolute temperature.
Therefore if the temperature is quadrupled, the radiant heat energy will increase by a factor of
4⁴ = 256
Answer: 256
Answer:
Velocity.
Explanation:
Projectile motion is characterized as the motion that an object undergoes when it is thrown into the air and it is only exposed to acceleration due to gravity.
As per the question, 'any change in the initial velocity of the projectile(object having gravity as the only force) would lead to a change in the range as well as the maximum height of the projectile.' To illustrate numerically:
Horizontal range: As per expression:
R= (*sin2θ)/g
the range depending on the square of the initial velocity.
Maximum height: As per expression:
H= ( * θ
)/2g
the maximum distance also depends upon square of the initial velocity.
Answer:
The answer is 1.0 N
Explanation:
inclination of tray=12^{\circ}
gravitational Force=5 N
Now this gravitational force has two component i.e.
5\sin \theta is parallel to the tray =1.039 N
5\cos \theta is perpendicular to the tray =4.890 N