I got -3.6 m/s but I had to do conservation of momentum for this question. Which involves Newtons third law but with simply that law I do not know how to complete this question. If you would like me to post my work I will though! Sorry
Answer:
0.777m
Explanation:
The sound wave has a wavelength of 0.773m.
Explanation:
To solve this problem we have to use the wave equation that is given below:
We know the frequency and the velocity, both of which have good units. All we have to do is rearrange the equation and solve for
λ
:
λ
=
v
f
Let's plug in our given values and see what we get!
λ
=
340
m
s
440
s
−
1
λ
=
0.773
m
Hope this helps, Mark as brainliest if u want
The question is incomplete. Here is the complete question.
A floating ice block is pushed through a displacement vector d = (15m)i - (12m)j along a straight embankment by rushing water, which exerts a force vector F = (210N)i - (150N)j on the block. How much work does the force do on the block during displacement?
Answer: W = 4950J
Explanation: <u>Work</u> (W), in physics, is done when a force acts on an object that has a displacement form a place to another:
W = F · d
As the formula shows, Work is a scalar product, i.e, it results in a number, so, Work only has magnitude.
Force and displacement for the ice block are in 2 dimensions, then work will be:
W = (210)i - (150)j · (15)i - (12)j
W = (210*15) + (150*12)
W = 3150 + 1800
W = 4950J
During the displacement, the ice block has a work of 4950J
Answer:
The Physical Behavior of Objects when Gravity is Missing
In order to be able to form a concept of the general physical conditions existing in a weightless state, the following must be noted: the force of the Earth's gravity pulling all masses down to the ground and thus ordering them according to a certain regularity is no longer active.