Heat would be required : 1,670 J
<h3>Further explanation</h3>
Given
mass of H₂O=5 g
Required
Heat to melt
Solution
The heat to change the phase can be formulated :
Q = m.Lf (melting/freezing)
Lf=latent heat of fusion
The heat of fusion for water at 0 °C : 334 J/g
Input given values in formula :

Answer:
First choice: 2
Explanation:
There are 2 phosphorous (P) in the substance.
Ignore the strontium (Sr3) part because you are looking to isolate the P from (PO4)2.
Break the chemical equation apart to get 1 Phosphorous atom, and 4 Oxygen atoms.
Now, multiple 1 by 2 because that are 2 phosphate to get 2 phosphorous atoms.
Answer:
0.404M
Explanation:
...<em>To make exactly 100.0mL of solution...</em>
Molar concentration is defined as the amount of moles of a solute (In this case, nitrate ion, NO₃⁻) in 1 L of solution.
To solve this question we need to convert the mass of Fe(NO₃)₃ to moles. As 1 mole of Fe(NO₃)₃ contains 3 moles of nitrate ion we can find moles of nitrate ion in 100.0mL of solution, and we can solve the amount of moles per liter:
<em>Moles Fe(NO₃)₃ -Molar mass: 241.86g/mol-:</em>
3.26g * (1mol / 241.86g) =
0.01348 moles Fe(NO₃)₃ * (3 moles of NO₃⁻ / 1mole Fe(NO₃)₃) =
<em>0.0404 moles of NO₃⁻</em>
In 100mL = 0.1L, the molar concentration is:
0.0404 moles of NO₃⁻ / 0.100L =
<h3>0.404M</h3>
First let us compute for the number of moles of butane
(molar mass = 58.12 g/mol)
number of moles = 145 g / (58.12 g/mol) = 2.49 mol
<span>We use the ideal
gas equation to calculate the volume:</span>
<span> V = n R T / P</span>
V = 2.49 mol * 62.36367 L torr / mol K * 308.15 K / 745
torr
<span>V = 64.35 L</span>