The velocity of tennis racket after collision is 14.96m/s
<u>Explanation:</u>
Given-
Mass, m = 0.311kg
u1 = 30.3m/s
m2 = 0.057kg
u2 = 19.2m/s
Since m2 is moving in opposite direction, u2 = -19.2m/s
Velocity of m1 after collision = ?
Let the velocity of m1 after collision be v
After collision the momentum is conserved.
Therefore,
m1u1 - m2u2 = m1v1 + m2v2


Therefore, the velocity of tennis racket after collision is 14.96m/s
Answer:
If by 1.5 MJ you mean 1.5E6 Joules then
W = P t = power X time
W / t = P power
P = 1.5E6 J / 600 sec = 2500 J / s
P = I V
a) I = 2500 J/s / (240 J/c) = 10.4 C / sec = 10.4 amps
b) Q = I t = 10.4 C / sec * 300 sec = 3120 Coulombs
c) E = P * t = 2500 J / sec * 100 hr * 3600 sec / hr = 9.0E8 Joules
Answer:
The 10X objective is use for the identification of actual size of histology tissues and 4X magnification is best for observation of most tissues slides
Explanation:
4X magnification is best for observation of most tissues slides because it has an objective lens that have lower power and have great high field overview which make it very easier to locate specimens on the slide. It is use to get the overview of histology slides. It is use to showcase more detailed observations about histology.
The 40X objective is use majorly to identify tissue , to observe the finer details and study tissue organization on the histology slide.
Answer:
ω = 630.2663 = 630[rad/s]
Explanation:
Solution:
- We can tackle this question by simple direct proportion relation between angular speed for the disk to rotate a cycle that constitutes 20 holes. We will use direct relation with number of holes per cycle to compute the revolution per seconds i.e frequency of speed f.
1rev(20 hole) -> 20(cycle)/rev
2006.2(cycle) -> f ?
f = 2006.2/20 = 100.31rev at second
- The relation between angular frequency and angular speed is given by:
ω = 2πf
ω = 2*3.14*100.31
ω = 630.2663 = 630[rad/s]